
Content Addressed Descriptors and Interfaces with
Spritely Goblins

Christine Lemmer-Webber

April 18, 2025

Language is a continuous reverse engineering effort between the par-
ties involved.

– Jonathan A. Rees, individual correspondence

1 Programming as a conversation

Communication always occurs in some degree of shared context between the par-
ties involved. Human language notoriously drifts dramatically; meaning of words
change regularly. Much work is done to try to protect communication from ambi-
guity. In computer science, this is typically done through typing or contracts (to the
extent that there is any difference between them). Types and contracts restrict the
scope of incoming information to what is expected within the receiving context.

Static typing takes a pre-emptive approach to preventing misbehavior through
incorrect inputs, dynamic typing and run-time contracts perform late prevention of
misbehavior, and linting tries to politely inform the programmer that misbehavior
might be present.

This is all well and good when two parties already know ahead of time what
kind of things they intend to talk about. However, in development of a program, one
is often times "figuring out" what communication might be possible. Lisp enthusi-
asts frequently praise lisp environment’s propensity towards "REPL driven develop-
ment"; the programmer crafts the program by programming up until a point where
it’s unclear what the next piece is, experimenting live at an interactive REPL, read-
ing documentation against datastructures and procedures, and eventually moving
this code into a more permanent place of a source code file (but even here there
is little distinction between the source code file and the interactive REPL). Thus,
programming becomes a conversation.

Lisp users may have some of this best kind of tooling, but they are hardly alone.

1

Static programmers with sufficient tooling also enjoy conversational programming.
Many IDE environments can explain what methods are available on an object, and
even compiler errors are a kind of conversation.

What is strange about conventional programming practices is that developers
tend to perform this kind of inquiring-conversation while writing programs, but
once programs are written, execution and runtime tends to be very ossified (until
the program is once again changed by a programmer, possibly due to new re-
quirements or after some debugging session). However, even within these ossified
systems, pattern matching and dispatch based on the response to the question of
"what kind of object is this?" is the basis of all program flow. Every conditional in-
volves a question about the state of some value, from merely "is this true or false?"
to "is this number prime?" or "is this an integer or a string?"

Types, contracts, interfaces, documentation, schemas, and vocabulary are all
smudged across these domains. While preventing errors is important, we should
not ignore the role of communication in terms of behavior flow, nor in terms of
discovery of potential interaction.

2 Pigeons and vocabulary

Do you and I mean the same thing? Lojban enthusiasts clearly solved language,
creating something completely syntactically unambiguous! Except, oh no, turns
out syntactic unambiguity does not mean meaning unambiguity. What’s a bear?
From an evolutionary standpoint, something moved from a pre-bear state to a bear-
state, but evolution didn’t put a pin in it. . . this was rough, statistical, approximate.
Not to mention, what’s a "dead bear"? Is it still a bear? When does it decompose
into bear goo? And when does it decompose beyond that? Vocabulary thus seems
to be a tug-of-war between fuzziness and crispness.

This is also a problem in our computer programs. In an exercise-tracking pro-
gram, "run" might mean running some program while also referring to the human
activity of "running".

The linked data community tries to improve upon this situation by having vo-
cabulary tied to URIs, most popularly HTTP based URIs. This seems like an improve-
ment. . . this should open up the number of pigeonholes we have on hand to stuff
our meaning-pigeons into! Except:

• HTTP based websites go down all the time or change hands

• HTTP(S) conventionally relies on DNS and SSL Certificate Authorities, which
are majorly centralized

2

https://mw.lojban.org/papri/jbocre:_Bear_goo
https://fossandcrafts.org/episodes/23-nerdout-fuzzy-and-crisp.html

• Shared namespaces are an opening for fraught governance and bikeshed-
ding

• Vocabulary drift still happens. . . a term’s meaning today might shift tomor-
row as the world’s context shifts around it

Some of this war is unwinnable, particularly around vocabulary drift. Identity
is the sticky mudball of associations that forms around identifiers, and it’s always
going to be kind of messy. However, we can make the situation better. But first let’s
talk about "descriptors".

3 Dungeons and Descriptors

Let us imagine playing a dungeon crawler type game. We might encounter treasure
which we might collect, monsters which we might fight, potions which we might
collect and drink, and doors and chests which we might open (but for different
reasons!). We also might want to attack monsters and drink potions, but if we
attack potions and drink monsters, we might not get the results we expect, if we
get any result at all (other than wasted effort and confusion).

We might start by asking something, what kind of thing are you? For instance,
what’s a goblin? Well. . . maybe it’s a goblin?

(type-of goblin) ; => 'goblin

Except maybe all Goblins are monsters, and maybe you can attack them. Okay.

(types-of goblin) ; => (set 'gameobj 'goblin 'monster

; 'attackable 'befriendable

'lookable)↪→

Hm. Maybe a thing is more defined by what it does. What kind of methods
does our goblin-object provide?

(methods goblin) ; => (set 'attack 'look 'befriend)

We might use these to prevent a programmer from accidentally trying to invoke
a goblin with the wrong method ahead of time (the object itself may do similar

3

https://dustycloud.org/blog/identity-is-a-katamari/

things to protect itself). Or we might use them to decide what kinds of things we,
as programmers, might be able to do with this object.

There’s clearly a large overlap between the (nominative) types-of procedure
and the methods procedure. Except the types-of also provides some additional
information than just whether or not our invocation is correct: it gives us a sense
of what this thing might be representationally. For instance, we might display items
and monsters very differently.

In a sense, this all relates to conceptual ideas of what we think the behavior
of this object is. . . rather than its actual behavior. Indeed, it may be more ap-
propriate in a mutually suspicious environment, such as in a mutually suspicious
peer-to-peer network to gain the idea of calling these alleged-types-of and
alleged-methods. . . in statically compiled programs, the compiler is able to act
as a central planner, ensuring that objects are what they say they are. In a mutually
distributed system, objects can claim to be something they are not. For instance,
that game object might call itself a treasure chest. . . but it might actually be a
mimic! Chomp!

Here we have provided these descriptors via an unordered set. Providing them
in an ordered set might be better in some cases, because certain behaviors, or
suggested displays, may override others. For that matter we might think we’d want
to automatically infer some descriptors from others. . . aren’t all monsters gameobjs
in this game anyway? And aren’t all gameobjs lookable? But, combining both of
these can lead to complicated challenges. . . here be dragons. Best to just focus on
unordered sets for this writeup.

We still have a problem though. . . we still can’t tell the difference between
"run" (make your character run away!) and "run" (run this custom NPC script!) in
this game either. What to do?

4 Introducing "Content Addressed Descriptors"

What if whether or not you and I mean the same thing can be determined based
on the description of what we mean?

(require "cad.rkt")

Now let’s make a content-addressed descriptor. Let’s take a term proposed as
an ActivityStreams extension:

4

https://www.w3.org/wiki/Activity_Streams_extensions
https://www.w3.org/wiki/Activity_Streams_extensions

5

(define sensitive-desc "\

The sensitive property (a boolean) on an object indicates \

that some users may wish to apply discretion about viewing its \

content, whether due to nudity, violence, or any other likely \

aspects that viewers may be sensitive to. This is comparable to \

what is popularly called \"NSFW\" (Not Safe For Work) or \

\"trigger warning\" in some systems. Implementations may choose \

to hide content flagged with this property by default, exposed at user

discretion.")↪→

The CAD (where CAD stands for "Content Addressed Descriptor") can be de-
rived with the cadify procedure:

> (cadify 'sensitive sensitive-desc)

'sensitive-BeL38HC3S5jhzbMEnVrx4CSM2LHy3EnKCQdUK2k7PCnc

Depending on how strongly one wants to guard against running out of pigeon-
holes, one could shorten the hash component to just the first eight characters:

> (cadify 'sensitive sensitive-desc #:short? #t)

'sensitive-BeL38HC3

Either would be possible with different tradeoffs, though for consistency, a sin-
gle choice should be made in a system.

The algorithm for deriving this identifier is quite simple:

• Take two arguments, a shortname1 (a string) and a description (may be any
Preserves document)

• Canonicalize description to Syrup

• Hash canonicalized description with sha256, then hash with sha256 again
(producing sha256d), and finally encode with base58

• If shortening, reduce hashed-and-encoded description to first eight charac-
ters

1The shortname is what is called in a petnames system a "self-proposed name".

6

https://preserves.gitlab.io/preserves/
https://github.com/ocapn/syrup

• Append together the shortname, a dash, then the hashed-and-encoded de-
scription2

• That’s it!

Hm, notice that the description can be any Preserves document. . . so, struc-
tured data rather than "just strings" are possible.

We could imagine this could be useful for various things. For instance, we could
use a dictionary which describes several fields. Perhaps we are playing a game
where we are describing creatures, and we want to know their name, a descriptive
desc (here using SXML inspired markup), and a set of habitats:

(define ogre-desc

(cadify "ogre"

`#hash((name . "Ogre")

(desc . ((p "A large, bumbling beast..")

(p (b "WARNING:")

" Ogres get angry very quickly!")))

(habitats . ,(set "cave" "forest" "swamp"

"dungeon")))))↪→

As we can see, this hashes just fine:

(cadify 'ogre ogre-desc)

'ogre-3LT14kW6WBzfC1JcZArLu92kV7nzdQNDDjbHMPUbCLMz

Strictly speaking, content addressing is always a kind of optimization, as the
equivalent non-hashed content could always be used in place. This is true, but the
compression gains of using content-addressing are significant.3 Since we result
in the same hash every time, it is fairly trivial to also set up a repository from
which the expanded content addressed definitions can be retrieved every time.4

2We have glossed over what "append together" means; presumably we mean string concatenation,
but in this example we have coerced the string into a symbol. In some contexts, a string-only
approach would be appropriate, perhaps in others a URI. In others still we might want a "struct" or
other more formalized record representation. It would be important to be consistent about how
to represent these, so in time it would be worthwhile to "converge" on a representation. In the
meanwhile, in describing these properties generally, we are being loose about things.

3Imagine explaining what a new word means based on several known words, and instead of using
the new word in a conversation, repeating the explanation every time in its place!

4The code for this is trivial to write. . . see the Fetching descriptors section of this document for

7

https://preserves.gitlab.io/preserves/
http://okmij.org/ftp/Scheme/SXML.html

Like words in ordinary language, content addressed terms can also be referenced
within the definitions of other content addressed terms.

5 Distributed objects and content addressed descriptors

We’d like to apply our content-addressed descriptors to distributed objects, but,
well. . . first we need a distributed object system. Spritely Goblins is a distributed
object (or, "classic actor model") system following object capability security patterns.

5.1 Wait! We need a tutorial of Spritely Goblins!

This particular article isn’t concerned with teaching you how to use Spritely Gob-
lins, but okay I suppose some amount of introduction is in order, so let’s be brief.
First, Goblins is written in Racket, which is a kind of Scheme, which is a kind of
Lisp, hence all the parenthetical syntax. See Racket’s documentation. For that mat-
ter, also see Goblins’ documentation.

(require goblins)

But okay, here’s a small, just barely mini-tutorial of Goblins.5 We can define a

an example implementation.
5We are cheating a bit here; spawn, $, <-, and on all only work inside of a goblins "turn" which

sets up the appropriate "goblins context". Most Goblins programming is done assuming such a
Goblins context is already running, but bootstrapping a program requires setting one up. Since we
are showing off examples running within a REPL in an exploratory style, unfortunately this requires
setting up one for every interaction. (Perhaps a Racket #lang can reduce some of this pain in the
future.) See the Goblins tutorial for more on how to do this, but here is a simple way to do it:

(require goblins/actor-lib/bootstrap)

(define-vat-run vat-run (make-vat))

Then you can interpret code like:

> (define alice (spawn ^greeter "Alice"))

> ($ alice "Bob")

"Hello Bob, my name is Alice!"

as:

8

https://docs.racket-lang.org/goblins/index.html
https://racket-lang.org/
https://docs.racket-lang.org/
https://docs.racket-lang.org/goblins/index.html
https://docs.racket-lang.org/goblins/tutorial.html

constructor, let’s call it ^greeter:

;; Constructor

(define (^greeter bcom my-name)

;; Handler

(lambda (your-name)

(format "Hello ~a, my name is ~a!" your-name my-name)))

We can then spawn such a greeter:5

> (define alice (spawn ^greeter "Alice"))

spawn implicitly passes a bcom to the constructor (used to update behavior of
objects).6 "Alice" is thus what is passed to my-name.

The inner lambda is the message handler. We can invoke an actor in a sequen-
tial call-return style with $:

> ($ alice "Bob")

"Hello Bob, my name is Alice!"

Asynchronous programming is also possible and uses the <- operator, which
returns a promise. We can then set up a callback to this promise with on:

> (define greet-me-vow (<- alice "Ben"))

> (on greet-me-vow

(lambda (we-heard)

(displayln (format "Heard: ~a" we-heard))))

;; Prints out the following:

;; Heard: Hello Ben, my name is Alice!

> (define alice (vat-run (spawn ^greeter "Alice")))

> (vat-run ($ alice "Bob"))

"Hello Bob, my name is Alice!"

6There’s a lot more to say about this; the entirety of state changes can be managed with bcom

9

Note that Goblins implements CapTP, which is a distributed networked proto-
col. Code that is written using asynchronous message sending with <- works triv-
ially over the network with CapTP. Since this portion of network code is abstracted
for us, we need not spend significant time thinking about how to invent new pro-
tocols for each kind of actor we make; the behavior of that actor is already possible
to be made available on the network over CapTP without any serious changes to
Goblins code which already makes use of asynchronous message passing with <-.

There is plenty more that can be said about Goblins, but this is the entirety of
what we need to continue with our article. So continue we shall!

5.2 A brief aside on methods in Goblins

"Method dispatch" is not first-class in Goblins. Instead, method dispatch is a pos-
sible convention, where the first argument to an invocation is considered the se-
lected method name (for objects which use the method-dispatch pattern). The
"methods" macro is a common tool to make writing these easy:7

(require goblins/actor-lib/methods)

(define (^creature bcom name adjective noise)

(methods

[(get-name) name]

[(interaction)

(format "You see the ~a ~a, which says \"~a\"!!!"

adjective name noise)]))

> (define wolf (spawn ^creature "wolf" "sneaky" "AWOOO"))

> ($ wolf 'get-name)

"wolf"

> ($ wolf 'interaction)

"You see the sneaky wolf, which says \"AWOOO\"!!!"

5.3 Adding a descriptive method

Now that we have a way to have multiple methods on an object, this seems like it
might be an excellent way to add content-addressed vocabulary to an object.

(pronounced "become"), which is a functional way of handling state changes for actors.
7All the methods macro does is create a procedure that dispatches based on the first argument.

10

https://docs.racket-lang.org/goblins/captp.html

Really, that’s it!

11

(define goblin-cad

(cadify 'goblin

"A small mythical creature with pointed ears."))

;; ...

(define (^goblin _bcom ...)

(methods

[(foo-method) ...]

[(_describe) (set goblin-cad gameobj-cad monster-cad

attackable-cad befriendable-cad

lookable-cad)]))↪→

Now we can call a Goblin with the '_describe method, and it should return
a set of descriptions.

Of course, we want consistency: when we are looking to describe an object, we
should expect a uniform way to find out that object’s descriptors. The solution in
the E programming language is to provide miranda methods, which are commonly
named object methods, and which if the user does not provide such a method, a
default method is supplied for them (for instance, a reasonable default here would
be to return an empty set).

5.4 Miranda Methods don’t work when methods are inessential

Unfortunately, the above approach won’t work for us. As we said, methods are not
first-class in Goblins, and therefore we cannot expect all objects to support them.
There may be many actors, such as instantiations of our ^greeter earlier, which
do not accept a method argument.

But without methods as an essential construct, how can we invoke something
that is not the standard behavior of the object? How could we request a set of
descriptors from ^greeter, for example?

5.5 Warding off method behavior

Goblins has a solution for behavior that is not the default behavior. This behavior
is present, but invisible: it is warded off from the user by a "warden", and only the
relevant "incanter" can cast the right spell, exposing the hidden functionality.8

8This idea of "wards" and "incanters" has a history, immediately borrowed from but modified from
an idea called energetic secrets in the wonderful Joule language, the direct precursor to E. The idea
of energetic secrets is that methods are not broadly available; one needs a capability to access
them. Like with wards and incanters, Joule used sealers and unsealers to implement what is called
rights amplification. (Joule’s energetic secrets itself was inspired by the T programming language’s

12

http://www.erights.org/index.html
https://www.erights.org/elang/blocks/miranda.html
http://www.erights.org/history/joule/MANUAL.B17.pdf
http://www.erights.org/history/joule/index.html
http://www.erights.org/
http://www.erights.org/history/morris73.pdf
http://erights.org/elib/capability/ode/ode-capabilities.html
http://mumble.net/~jar/tproject/

First, we need to make a ward and incanter pair:9

(require goblins/actor-lib/ward)

(define-values (describe-warden describe-incanter)

(spawn-warding-pair))

Now that we have this pair, we can make a modified version of our ^greeter:

(define (^greeter bcom my-name)

;; Main behavior

(define (main-beh your-name)

(format "Hello ~a, my name is ~a!" your-name my-name))

;; Descriptors behavior

(define (describe-beh)

(set greeter-cad))

;; Ward off the descriptors behavior so that only the descriptors

;; incanter can access it. Fall back to main behavior if not

;; invoked by the incanter.

(ward describe-warden describe-beh

#:extends main-beh))

Now, we can use the describe-incanter:

> ($ describe-incanter my-greeter)

(set 'greeter-7QA4GgZ7RsxDTuruyyAnihBw1euENDnu2rKrbuhpz4dj)

This same pattern also be used with <-, so works perfectly fine over the net-
work.10

However, the new ^greeter definition is not very comfortable to write. If
we had to describe many actor definitions this way, it would feel quite tedious.
Thankfully, it is not much work to make a usable utility.

approach to lexical-reference based dispatch, a stark contrast to the implicit-name-quoting approach
of method dispatch used generally.)

9We are once again glossing over the fact that invoking spawn can only be done in an actor
context.

10If the warden and your actor are not in the same vat, be sure to pass in the #:async? keyword
to the ward procedure.

13

(define (describe descriptions main-beh)

(define (describe-beh) descriptions)

(ward describe-warden describe-beh

#:extends main-beh))

Now ^greeter is much easier to read:

(define (^greeter bcom my-name)

(describe

(set greeter-cad)

(lambda (your-name)

(format "Hello ~a, my name is ~a!" your-name my-name))))

With Goblins being a lisp, we could add macros to make this even more con-
venient to read and write. Such an activity is left as an exercise for the reader.

5.6 Fetching descriptors

At the beginning of this document, we talked about the experience of coding at
a REPL and being able to have a "conversation". We can now query for a set of
descriptors describing an object, but we don’t seem to have any way to retrieve
what those descriptors mean. . . good enough to know if you and I mean the same
thing in advance, but not good enough for me to discover new things that you
mean.

Thankfully, since our terms are content-addressed, this is easy enough to "solve".
Here is an example of a procedure which can spawn both a registry of terms

as well as an object which can retrieve them:

14

(define (spawn-cad-registry-pair [cad-registry #hasheq()])

(define registry (spawn ^hash cad-registry))

(define (^register-cad bcom)

(lambda (name description)

(define cad (cadify name description))

($ registry 'set cad (record* 'cad name description))

cad))

(define (^fetch-cad bcom)

(lambda (name)

($ registry 'ref name)))

(values (spawn ^register-cad)

(spawn ^fetch-cad)))

With this, we have two separate capabilities; one allows users to register terms
they may find interesting, and another allows fetching them. Through this, it should
be possible to retrieve the definitions corresponding to the content-addressed
term identifier. The receiving party can even verify that the hash matches the
proclaimed definition, ensuring accuracy.

6 From Descriptors to Interfaces

So far we’ve looked at terms that are descriptors of objects. These descriptors are
more for human consumption than for computer consumption.

This is useful; two programmers using the same term are likely to know they
have a shared understanding of an object, and reading descriptions can help with
understanding and recovery, but can we add descriptors in such a way that make
them feel more meaningfully part of the program?

6.1 Describing methods

The first way we’ll look at useful program-relevant aspects of our content addressed
terms is to actually use them as our method names. Since, as we’ve said, method
names are a convention rather than a built-in. Since the convention is a symbol
as a first argument, and our content addressed terms can be rendered as symbols,
this mean they can also be our object’s first argument. We can also add this to our
object’s set of descriptors, and in this way what our object is can do is also what
our object is described as.

15

6.2 A taste of an IDL

It would be even better if our methods, or object as a whole, could be described
in terms of how it can be invoked. Having such descriptions could help annotate
behavior in our IDE, can give nicely rendered invocation explanations translated
to our programming language syntax of choice, do (a degree of) type checking, and
so on.

An initial source of inspiration could be Racket’s contract system. Here is a
simple contract for a procedure which takes two arguments, a string and a positive
integer and returns another string (the final argument to -> is the type of the return
value):

(define parrot-string/c

(-> string? positive-integer? string?)))

(By convention, contracts end with /c in Racket.)
This can be used to guard a procedure against misuse with define/contract:

(define/contract (parrot-string str numtimes)

parrot-string/c

(string-append

"BAWK! "

(for/fold ([result-str "BAWK!!!"])

([i numtimes])

(string-append str "! " result-str))))

It’s easy enough to actually turn this into a Goblins actor, since parrot-string
can simply be the current behavior:

(define/contract (^parrot _bcom)

parrot-string/c

parrot-string)

Now let’s say we spawned an instance of this parrot and invoked it incorrectly:

16

> (define parrot (spawn ^parrot))

> ($ parrot 'wrong "arguments")

; parrot-string: contract violation

; expected: string?

; given: 'foo

; in: the 1st argument of

; (-> string? positive-integer? string?)

; contract from: (function parrot-string)

So now our actor’s behavior is protected, assuring that it can only be invoked
with the correct type of inputs. However, we are interested in this information
being made available to clients, including remote clients, of an object.

Consider again our contract:

(define parrot-string/c

(-> string? positive-integer? string?))

We need some way to represent this in a way that can be conveyed to a remote
reader. What kind of syntax should we use to describe a remote contract?

Well, for the moment let’s go with the simplest idea possible. We will use a
syntax that is modeled directly off of Racket’s contract system. . . in fact, we can
simply quote the previous expression:

(define parrot-string/iface

'(-> string? positive-integer? string?))

Of course, this is not the same as an evaluated contract. But we could use this
as a kind of DSL. It would be even trivial to simply "eval" this in a safe context, but
we do not even need to resort to that. Making a transformer for this DSL is trivial:

17

(define (quoted->contract iface)

(define (convert-one iface)

(match iface

[(list '-> args ... return-type)

(define converted-args

(map convert-one args))

(dynamic->* #:mandatory-domain-contracts converted-args

#:range-contracts (list (convert-one

return-type)))]↪→

[(list 'and/c ifaces ...)

(apply and/c (map convert-one ifaces))]

[(list 'or/c ifaces ...)

(apply or/c (map convert-one ifaces))]

['string? string?]

['integer? integer?]

['positive-integer? positive-integer?]

['float? (and/c number? inexact?)]

['symbol? symbol?]))

(convert-one iface))

This simple procedure is sufficient to use as a basis for developing a simple DSL
that takes out quoted contract-style DSL and restores them to the same contracts
they represent:

> (define/contract (takes-string-and-positive-int str int)

(quoted->contract '(-> string? positive-integer? string?))

"yup it worked")

> (takes-string-and-positive-int "foo" 33)

"yup it worked"

> (takes-string-and-positive-int 'foo "33")

; takes-string-and-positive-int: contract violation

; expected: string?

; given: 'foo

; in: the 1st argument of

; (-> string? positive-integer? string?)

; contract from:

; (function takes-string-and-positive-int)

It is also possible to build a simple pretty printer for this syntax:

18

(define (explain-iface iface [indent-level 0] [bullet? #f])

(define first-line? #t)

(define (displayln-indent str)

(display "; ")

;; indent

(for ([i (* indent-level 2)])

(display " "))

;; maybe display a bullet

(when bullet?

(if first-line?

(begin (set! first-line? #f)

(display "- "))

(display " ")))

;; display the rest

(displayln str))

(define next-indent-level

(if bullet?

(+ indent-level 2)

(+ indent-level 1)))

(match iface

[(list '-> args ... return-type)

(displayln-indent (format "A procedure which takes ~a arguments:"

(length args)))

(for ([arg args])

(explain-iface arg next-indent-level #t))

(displayln-indent "and returns:")

(explain-iface return-type next-indent-level)]

[(list 'and/c ifaces ...)

(displayln-indent "Something which meets *all* of:")

(for ([iface ifaces])

(explain-iface iface next-indent-level #t))]

[(list 'or/c ifaces ...)

(displayln-indent "Something which meets *any* of:")

(for ([iface ifaces])

(explain-iface iface next-indent-level #t))]

['string? (displayln-indent "A string")]

['integer? (displayln-indent "An integer")]

['positive-integer? (displayln-indent "A positive integer")]

['float? (displayln-indent "A floating point number")]

['symbol? (displayln-indent "A symbol")]

['boolean? (displayln-indent "A boolean")])))

As we can see, this works just fine:

19

> (explain-iface '(-> string? positive-integer? string?))

; A procedure which takes 2 arguments:

; - A string

; - A positive integer

; ... and returns:

; A string

It is even able to handle nested structures!

> (explain-iface '(-> (-> (or/c symbol? string?) string?)

positive-integer? string?))↪→

; A procedure which takes 2 arguments:

; - A procedure which takes 1 arguments:

; - Something which meets *any* of:

; - A symbol

; - A string

; ... and returns:

; A string

; - A positive integer

; ... and returns:

; A string

Of course, what we need to do next is actually hook up such descriptions to
our object so that they are queryable. We will use a warden/incanter pair again to
do this:

(define-values (describe-warden describe)

(spawn-warding-pair))

Now we can define a simple procedure to share the interface with us and attach
it, warded, to the object’s behavior at construction time.

(define (^parrot _bcom)

(ward describe-warden

(lambda _ parrot-string/iface)

#:extends parrot-string

#:async? #t))

20

Given both a reference to both the describe incanter and a parrot, we can
ask for its interface from anywhere on the network:

> (a-run

(on (<- describe parrot)

explain-iface))

; A procedure which takes 2 arguments:

; - A string

; - A positive integer

; ... and returns:

; A string

Since the described s-expression is a Syrup-compatible expression, this also
means we could compose it into a larger description and even turn this entire
structure into a content addressed descriptor:

> (cadify 'parrot-string parrot-string/iface)

'parrot-string-H4N94Ubct7Ng96Q9Rijm89Do1gTkqareckGYQ479xUkQ

> (cadify 'parrot-actor

(record* 'actor

"Like a parrot, repeats everything back to you"

(cadify 'parrot-string parrot-string/iface)))

'parrot-actor-4NfCmGsgYhidKpGH7kFfD7v3cJGCgBw2UqfX9VEHTrgc

Here we showed a very small (and incomplete) DSL which is purely illustrative.11

A more robust DSL should follow similar principles but would be more carefully
considered for the needs of its users. On this note, Preserves Schema is probably

11Notably we have also made querying for what interface an actor follows was implemented
in such a way that the invoker was an explicit capability. It would be possible for us to instead
make querying for descriptors universal and first-class. We could make a global pair of the war-
den/incanter for descriptions and simply apply them everywhere within a process. To make this
work over CapTP, we could take advantage of the "bootstrap" actor associated with a connection,
and attach a description-showing incanter to it by default. This allows for behavior akin to the self-
descriptive miranda-methods without needing to take a method-first approach. However, consider
that the ward/incanter approach already indicates that there may be times where some actors have
"hidden" functionality. Thus, it might be that some users might have information about methods that
are applicable to them and not others. . . for example, some users might be administrators of a social
network and have access to extra methods to silence some users which others do not have access
to. (An excellent example of this where Object-Capability Security in Virtual Environments when
demonstrating "rights amplification" where teachers have access to some methods on represented
participants that the students do not.) As such, it would be appropriate for different users to also get
different descriptions relevant to what they are expected to be able to do.

21

https://github.com/ocapn/syrup
https://preserves.gitlab.io/preserves/preserves-schema.html
https://www.uni-weimar.de/fileadmin/user/fak/medien/professuren/Virtual_Reality/documents/publications/capsec_vr2008_preprint.pdf

the right design, and unshockingly compatible with Syrup (since it is a Preserves
encoding).

7 Limitations in a mutually suspicious network

What we might observe is that the contract we showed in the IDL section relied
on runtime enforcement. The difference between runtime contracts and static
type checking is merely whether it can be done ahead of time. This is mostly an
optimization, but it can also be used to anticipate and protect against bugs when
expected behavior is violated.

The general idea of anticipating and warning against unexpected behavior may
still hold. However, in a mutually suspicious network, the most optimistic one may
get about optimizing away contracts is at the boundary of mutual suspicion.

This is because optimizations are generally done from the standpoint of a kind
of pseudo-centralized planner. A static type checker for a Haskell program can
eliminate checks between procedures by knowing the complete annotations of
types between invoked procedures.

This is not the case when we enter the arena of mutual suspicion on the net-
work. As an example, consider if Alice on environment A invokes Bob on envi-
ronment B, who fulfills a promise (as its return value) returning what, according to
Bob’s alleged contract, will be a non-negative integer. Alice passes this value to
Andrew (who, like Alice, is on environment A), who expects in turn a non-negative
integer, and would behave very dangerously (for instance, perhaps corrupting a
financial database) if a negative integer would happen to make its way through.
In a fully local statically checked system with a language environment that is able
to perform full trusted analysis, the language environment could detect that Bob
should return a non-negative integer to Alice’s continuation and that Alice would
then pass this integer to Andrew, and thus remove the runtime check between
Alice and Andrew.

But what if Bob were to misbehave? In a mutually suspicious system such as
Goblins, we cannot trust the contracts of other entities so much that we assume
them to be true.

However, optimizations can still be done. Alice and Andrew’s language en-
vironment could recognize that a boundary contract enforcement must still be
performed on the value from Bob’s fulfilled promise. However, since Alice and
Andrew’s behaviors can be fully analyzed and are indeed managed by the same
language environment, the environment can safely remove the runtime check be-
tween Alice and Andrew if Bob’s behavior is still checked at runtime (whether by

22

https://github.com/ocapn/syrup
https://preserves.gitlab.io/preserves/

validation, or validation through parsing).12

If environment A is able to "trust" that environment B will perform as it claims
it will, these restrictions may be removed, at the peril of this trust being false.
Distributed communication with a trusted auditor could be one way to do this;
the auditor provides assurance that the code works as expected, and A (or the
relevant entities on A that would otherwise demand a contract check) can perform
optimized routines with those assurances.

So it is our observation here that the general case of mutual suspicion im-
plies that proclaimed interfaces are really "alleged" interfaces. Still, we should not
take this to feel bad about our designs. . . that we can safely operate in mutually
suspicious environments at all is a wonderful kind of success! We must simply
understand the emergent limitations of the problem domain.

8 Implementation

#lang racket/base

(require racket/match

racket/contract

crypto

crypto/libcrypto

base58

syrup

goblins

goblins/actor-lib/common)

(provide cadify

split-cad-symbol

symbol->cad)

(crypto-factories (list libcrypto-factory))

;; Avoid length extension attacks

(define (sha256d input)

(digest 'sha256 (digest 'sha256 input)))

(define/contract (cadify shortname description #:short? [short? #f])

(->* ((or/c string? symbol?) any/c) (#:short? boolean?) symbol?)

(define base58-hash

12Note that the requirements on boundary checks between Typed Racket and Untyped Racket are
very similar and operate in much the mechanism described here: enforcement occurs primarily at
the border.

23

http://www.erights.org/elang/kernel/auditors/index.html

(base58-encode (sha256d (syrup-encode description)) #:check? #f))

(string->symbol

(format "~a-~a"

shortname

(if short?

(substring base58-hash 0 8)

base58-hash))))

(module+ test

(require rackunit)

(crypto-factories (list libcrypto-factory))

(define look-desc "\

Look at a fantasary game object, returning a string \

designating current description. Takes no arguments.")

(define look-cad (cadify 'look look-desc))

(define look-scad (cadify 'look look-desc #:short? #t))

(define fantasary-gameobj-desc

"A game object in the Fantasary game system."))

(define (spawn-cad-registry-pair [cad-registry #hasheq()])

(define registry (spawn ^hash cad-registry))

(define (^register-cad bcom)

(lambda (name description)

(define cad (cadify name description))

($ registry 'set cad (record* 'cad name description))

cad))

(define (^fetch-cad bcom)

(lambda (name)

($ registry 'ref name)))

(values (spawn ^register-cad)

(spawn ^fetch-cad)))

(module+ test

(require goblins/actor-lib/bootstrap)

(define-vat-run vat-run (make-vat))

(define-values (register-cad fetch-cad)

(vat-run (spawn-cad-registry-pair)))

(test-equal?

"Register cad claims to register the cad"

(vat-run ($ register-cad 'foo-bar "A foo and a bar, by far, by

far"))↪→

'foo-bar-2aNSpqx96JFBzdSWUQXJZu6haew1tF9hLRicqHyCmyiX)

24

(test-equal?

"fetch-cad gives us the cad's definition"

(vat-run ($ fetch-cad

'foo-bar-2aNSpqx96JFBzdSWUQXJZu6haew1tF9hLRicqHyCmyiX))↪→

(record* 'cad 'foo-bar "A foo and a bar, by far, by far")))

;;;; Not really used yet. Maybe later.

(define (cad hash description)

(record* 'cad hash description))

(define (cad? obj)

(match obj

[(record 'cad (list string? bytes?))

#t]

[_ #f]))

(define (cad-hash cad)

(match cad

[(record 'cad (list (? string? _shortname) (? bytes? hash)))

hash]))

(define (cad-shortname cad)

(match cad

[(record 'cad (list (? string? shortname) (? bytes? _hash)))

shortname]))

(define (cad->symbol cad)

(match cad

[(record 'cad (list (? string? shortname) (? bytes? hash)))

(define base58-hash (base58-encode hash #:check? #f))

(string->symbol

(format "~a-~a"

shortname

(substring base58-hash 0 8)))]))

(define (split-cad-symbol cadify-symbol)

(define str (symbol->string cadify-symbol))

(define last-dash #f)

(define str-len (string-length str))

(for ([i str-len])

(when (eq? (string-ref str i) #\-)

(set! last-dash i)))

(if last-dash

(values (substring str 0 last-dash)

(substring str (add1 last-dash) str-len))

(error "No dash in string")))

25

(define (symbol->cad cad-sym)

(define-values (shortname encoded-hash)

(split-cad-symbol cad-sym))

(define hash (base58-decode encoded-hash #:check? #f))

(cad shortname hash))

9 Examples

9.1 CAD examples

Pretty simple:

cd public

racket cad-examples.rkt

It’s pretty simple, it just shows how various kinds of descriptors can be content-
addressed in a consistent way.

#lang racket

(require "cad.rkt"

syrup)

(define (explain-cad shortname description)

(displayln (format "** Shortname: ~a**" shortname))

(displayln "** Description: **")

(pretty-print description)

(displayln "** CAD: **")

(displayln (format " ~a " (cadify shortname description)))

(newline))

(displayln "==== Simple strings ====")

(define sensitive-desc "\

The sensitive property (a boolean) on an object indicates \

that some users may wish to apply discretion about viewing its \

content, whether due to nudity, violence, or any other likely \

aspects that viewers may be sensitive to. This is comparable to \

what is popularly called \"NSFW\" (Not Safe For Work) or \

\"trigger warning\" in some systems. Implementations may choose \

26

to hide content flagged with this property by default, exposed at user

discretion.")↪→

(explain-cad 'sensitive sensitive-desc)

(displayln "==== Composite structures ====")

(define ogre-desc

`#hash((name . "Ogre")

(desc . ((p "A large, bumbling beast..")

(p (b "WARNING:")

" Ogres get angry very quickly!")))

(habitats . ,(set "cave" "forest" "swamp" "dungeon"))))

(explain-cad 'ogre ogre-desc)

(displayln "==== Interface descriptions ====")

(define parrot-string/iface

'(-> string? positive-integer? string?))

(explain-cad 'parrot-string parrot-string/iface)

(displayln "==== Composite actor descriptions, with interfaces ====")

(define parrot-actor-desc

(record* 'actor

"Like a parrot, repeats everything back to you"

(cadify 'parrot-string parrot-string/iface)))

(explain-cad 'parrot-actor parrot-actor-desc)

9.2 Rich interface examples

You’ll need to launch the Tor daemon for Goblins. It’s mildly annoying to set up at
the time of writing, but the instructions are on the Goblins CapTP documentation
page.

Okay, done? Then open two terminals. In the first one:

cd public

racket rich-interface-server.rkt

That’ll print out two "sturdyrefs", one for the parrot, one for the describe incan-
ter, that you want to paste to rich-interface-client.rkt.13 But actually, the
last line it spits out is just the whole command you want to copy-paste to run the
entirety of that command for your convenience.

13By the way, Goblins with Tor Onion Services is peer to peer so client to server so this is kind
of a misnomer. But it’s the eaiest way to say "here’s the thing that will be connecting, and here’s the

27

https://docs.racket-lang.org/goblins/captp.html
https://docs.racket-lang.org/goblins/captp.html

Anyway, once you do so it’ll do a few things:

• Fetch and print the structured representation of the parrot’s remote interface

• Print that out in a human-meaningful form

• Invoke the parrot and print out its result

#lang racket

(provide quoted->contract

explain-iface)

(require syrup

goblins/actor-lib/ward)

(define (quoted->contract interface)

(define (convert-one iface)

(match iface

[(list '-> args ... return-type)

(define converted-args

(map convert-one args))

(dynamic->* #:mandatory-domain-contracts converted-args

#:range-contracts (list (convert-one

return-type)))]↪→

[(list 'and/c ifaces ...)

(apply and/c (map convert-one ifaces))]

[(list 'or/c ifaces ...)

(apply or/c (map convert-one ifaces))]

['string? string?]

['integer? integer?]

['positive-integer? positive-integer?]

['float? (and/c number? inexact?)]

['symbol? symbol?]

['boolean? boolean?]))

(convert-one interface))

(define (explain-iface iface [indent-level 0] [bullet? #f])

(define first-line? #t)

(define (displayln-indent str)

(display "; ")

;; indent

(for ([i (* indent-level 2)])

(display " "))

thing it will connect to" in familiar language I know of.

28

;; maybe display a bullet

(when bullet?

(if first-line?

(begin (set! first-line? #f)

(display "- "))

(display " ")))

;; display the rest

(displayln str))

(define next-indent-level

(if bullet?

(+ indent-level 2)

(+ indent-level 1)))

(match iface

[(list '-> args ... return-type)

(displayln-indent (format "A procedure which takes ~a arguments:"

(length args)))

(for ([arg args])

(explain-iface arg next-indent-level #t))

(displayln-indent "... and returns:")

(explain-iface return-type next-indent-level)]

[(list 'and/c ifaces ...)

(displayln-indent "Something which meets *all* of:")

(for ([iface ifaces])

(explain-iface iface next-indent-level #t))]

[(list 'or/c ifaces ...)

(displayln-indent "Something which meets *any* of:")

(for ([iface ifaces])

(explain-iface iface next-indent-level #t))]

['string? (displayln-indent "A string")]

['integer? (displayln-indent "An integer")]

['positive-integer? (displayln-indent "A positive integer")]

['float? (displayln-indent "A floating point number")]

['symbol? (displayln-indent "A symbol")]

['boolean? (displayln-indent "A boolean")]))

#lang racket

(require goblins

goblins/actor-lib/bootstrap

goblins/actor-lib/ward

syrup

"rich-interface-tools.rkt"

"cad.rkt")

;; Description warden/incanter pair

29

;; ================================

(define-vat-run describe-vat-run (make-vat))

(define-values (describe-warden describe)

(describe-vat-run

(spawn-warding-pair #:async? #t)))

;; Repeater behavior and contracts

;; ===============================

(define parrot-string/c

(-> string? positive-integer? string?))

(define parrot-string/iface

'(-> string? positive-integer? string?))

(define parrot-string-cad

(cadify 'parrot-string parrot-string/iface))

(define/contract (parrot-string str numtimes)

parrot-string/c

(string-append

"BAWK! "

(for/fold ([result-str "BAWK!!!"])

([i numtimes])

(string-append str "! " result-str))))

(define (^parrot _bcom)

(ward describe-warden

(lambda _ parrot-string/iface)

#:extends parrot-string

#:async? #t))

(module+ main

(require goblins/ocapn

goblins/ocapn/netlayer/onion)

(define-vat-run a-run (make-vat))

(define-vat-run machine-run (make-vat))

(define mycapn

(machine-run (spawn-mycapn (setup-onion-netlayer))))

(define parrot (a-run (spawn ^parrot)))

(define parrot-sref

(machine-run ($ mycapn 'register parrot 'onion)))

(define describe-sref

(machine-run ($ mycapn 'register describe 'onion)))

30

(displayln "*** Connect to parrot at:")

(displayln (ocapn-sturdyref->string parrot-sref))

(displayln "*** Connect to describe incanter at:")

(displayln (ocapn-sturdyref->string describe-sref))

(displayln "*** Or, simply run:")

(displayln (format "racket rich-interface-client.rkt ~a ~a"

(ocapn-sturdyref->string parrot-sref)

(ocapn-sturdyref->string describe-sref)))

;; keep things alive hack

(sync (make-semaphore)))

(module+ test

(define-vat-run a-run (make-vat))

(define parrot (a-run (spawn ^parrot)))

(a-run

(on (<- describe parrot)

explain-iface))

)

#lang racket

(require goblins

goblins/actor-lib/let-on

goblins/actor-lib/await

goblins/actor-lib/bootstrap

goblins/ocapn

goblins/ocapn/netlayer/onion

syrup

"rich-interface-tools.rkt")

(define (main parrot-sref describe-sref)

(define-vat-run a-run (make-vat))

(define-vat-run machine-run (make-vat))

(define mycapn

(machine-run (spawn-mycapn (setup-onion-netlayer))))

(define done (make-semaphore))

(define (uhoh _e)

(displayln "Uhoh, something went wrong, huh?")

(semaphore-post done))

(a-run

(with-await await

31

;; using await like this avoids the crossed hellos problem

;; while also not solving the crossed hellos problem #thisisfine

(define describe (await (<- mycapn 'enliven describe-sref)))

(define parrot (await (<- mycapn 'enliven parrot-sref)))

(await

(on (<- describe parrot)

(lambda (iface)

(displayln ";; Parrot's interface (encoded):")

(display ";") (write iface)

(newline) (newline)

(displayln ";; Parrot's interface (explained):")

(explain-iface iface))

#:catch uhoh

#:promise? #t))

(newline)

(await

(on (<- parrot "Repeat three times" 3)

(lambda (parrot-says)

(displayln ";; Parrot says:")

(display "; ")

(display parrot-says)

(newline))

#:catch uhoh

#:promise? #t))

(semaphore-post done)))

;; hack to wait to close this file until we hear back

(let () (sync done) (void)))

(module+ main

(command-line

#:args (parrot-address describe-address)

(main (string->ocapn-sturdyref parrot-address)

(string->ocapn-sturdyref describe-address))))

10 Thanks, licensing, etc

This document, and the underlying work on which it builds, were generously funded
by NLnet and NGI Zero. This grant supported many aspects which enabled this
document to appear to propose such "simple" approaches: the CapTP networked
communication layer implementation was largely funded by this grant. The ini-
tial assumptions were that the protocol itself would need to support interfaces
as a first-class operation, but the development of the wards-and-incanters system
ended up being the ultimate solution to this system. Having both CapTP and the
ward/incanter structure allowed for the ideas explored here to be layered on top of

32

https://nlnet.nl/PET/
https://liberapay.com/cwebber

the underlying networked protocol in a more beautiful and simple way than was
anticipated from the outset, also allowing for evolution of the underlying ideas
within systems developed in practice. Thank you also to supporters of the FOSS &
Crafts Studios patreon account, who have provided ongoing support to Spritely’s
development.

Sandro Hawke is the one responsible for pointing out that the paragraph of
text in a specification describing expected behavior is the real determination of
whether or not two parties mean the same thing as opposed to some arbitrary
URI. . . so why not use the text instead? I thought this observation was great,
which inspired the approach to content addressed definitions/vocabulary in gen-
eral, though it turns out Sandro meant something else. The observation, nonethe-
less, laid the foundation for much of this writing.

The Object Capability Security community made enormous contributions, di-
rectly and indirectly to this document. The original design for CapTP came from the
E programming language, and most of Goblins’ design is directly descendent from
those combining E and Scheme. There are too many people in the object capabil-
ity community to thank directly, but Mark S. Miller’s help in guiding Chris through
fundamental concepts, and Kevin Reid’s feedback on the idea of "interfaces" based
on what an object claims it can do stand out. Dean Tribble came up with the idea
of energetic secrets, on which the ward/incanter design is based. Although not ex-
haustive, comments from Carl Hewitt, Matt Rice, Dale Schumacher, Alan Karp, Ian
Denhardt, Bill Frantz, Corbin Simpson, and Baldur Jóhannsson provided substantial
impact on the thinking of this paper or on Goblins’ networking layer itself.

Tony Garnock-Jones came up for the design for Preserves (of which Syrup is
an encoding) and Preserves Schema and provided much thinking into what it
means to encode data. Serge Wroclawski provided feedback on the idea of content
addressed descriptors and their application to interfaces, went through and pro-
vided feedback on the Goblins tutorial, and wrote an example bot for goblin-chat.
Jonathan Frederickson, Isak Andersson (bitpuffin) and Jessica Tallon also read and
provided useful and early feedback on Goblins’ tutorial and designs. Jonathan Rees
contributed many hours of thinking on the nature of shared meaning in commu-
nication systems. Additionally, Jonathan Rees provided a clear link between object
capability security and Scheme (and scheme-like languages generally), which was
the author’s initial introduction to the ideas and feasibility of object capability secu-
rity. Stephen Webber helped guide me down many more computer science rabbit
holes than I might have dared to tread otherwise. Morgan Lemmer-Webber proof-
read this paper, suggested structural edits, and generally provided much emotional
support.

This paper and its associated code are dual-licensed under CC BY 4.0 Interna-
tional and Apache v2. Run, read, share, and modify it to your heart’s content!

33

https://www.patreon.com/fossandcrafts
https://www.patreon.com/fossandcrafts
https://sandhawke.github.io/mov/
http://erights.org/elib/distrib/captp/index.html
http://www.erights.org/
http://www.erights.org/history/joule/MANUAL.B17.pdf
https://preserves.gitlab.io/preserves/
https://preserves.gitlab.io/preserves/preserves-schema.html
https://gitlab.com/spritely/goblin-chat
http://mumble.net/~jar/pubs/secureos/secureos.html
http://mumble.net/~jar/pubs/secureos/secureos.html
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0

	Programming as a conversation
	Pigeons and vocabulary
	Dungeons and Descriptors
	Introducing "Content Addressed Descriptors"
	Distributed objects and content addressed descriptors
	Wait! We need a tutorial of Spritely Goblins!
	A brief aside on methods in Goblins
	Adding a descriptive method
	Miranda Methods don't work when methods are inessential
	Warding off method behavior
	Fetching descriptors

	From Descriptors to Interfaces
	Describing methods
	A taste of an IDL

	Limitations in a mutually suspicious network
	Implementation
	Examples
	CAD examples
	Rich interface examples

	Thanks, licensing, etc

