
A Scheme Primer

Christine Lemmer-Webber and the Spritely Institute

Table of Contents
1. Introduction
2. Setting up
3. Hello Scheme!
4. Basic types, a few small functions
5. Variables and procedures
6. Conditionals and predicates
7. Lists and "cons"
8. Closures
9. Iteration and recursion
10. Mutation, assignment, and other kinds of side effects
11. On the extensibility of Scheme (and Lisps in general)
12. Scheme in Scheme
The following is a primer for the Scheme family of programming languages. It was originally
written to aid newcomers to technology being developed at The Spritely Institute but is designed to
be general enough to be readable by anyone who is interested in Scheme.

This document is dual-licensed under Apache v2 and Creative Commons Attribution 4.0
International and its source is publicly available.

A walk-through of this document is available on YouTube and PeerTube.

1. Introduction
In all the world of computer programming, there are few languages as simple, clean,
comprehensive, powerful, and extensible as Scheme. The introduction to the R5RS edition of
Scheme's standardization1 explains its philosophy well:

Programming languages should be designed not by piling feature on top of feature, but
by removing the weaknesses and restrictions that make additional features appear
necessary.

This minimalism means that the foundations of Scheme are easy to learn. The R5RS introduction
continues with:

Scheme demonstrates that a very small number of rules for forming expressions, with
no restrictions on how they are composed, suffice to form a practical and efficient
programming language that is flexible enough to support most of the major

1 R5RS stands for "Revised(5) Report on the Algorithmic Language Scheme". It is not the only edition of Scheme, but
it is very small, clean, and minimal. It may be too small, in some ways: implementations of R5RS Scheme are
notorious for being incompatible with each other when it comes to actual libraries in use, not least of which because
R5RS did not even include a library system! Nonetheless, R5RS is short and easy to read. If you enjoy this
document, we would encourage reading either R5RS (or R7RS-small for an only slightly longer but more inter-
compatible modern report on Scheme).

1

https://schemers.org/Documents/Standards/R5RS/
https://share.tube/w/gdtnuipKbbVdR2u1murL4t
https://www.youtube.com/watch?v=DDROSL-gGOo
https://gitlab.com/spritely/scheme-primer
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://spritely.institute/
https://en.wikipedia.org/wiki/Scheme

programming paradigms in use today.

With just a few rules and an incredibly simple syntax, Scheme manages to be able to handle any
language paradigm you can throw at it. Its minimal base and strong support for extensibility means
that it is beloved by and frequently used as a foundation for academic language research.

But a strong reputation in one domain can also be a weak reputation in another. Scheme's
association with being an academic language has also lead it to be frequently interpreted as too
difficult for the "average" programmer to adopt.

In reality, there is nothing difficult about Scheme, and any programmer can learn it in a very short
amount of time (even, maybe especially, children and non-programmers).2

At the Spritely Institute, we decided to base our core technology, Spritely Goblins, on Scheme. We
found that while there were excellent in-depth writings on Scheme, and some simple and short
Scheme tutorials, what was lacking was a middle-of-the-road introduction. The following is
somewhere between a brief and comprehensive overview of Scheme. A shallow read of the
following text is sufficient to begin being productive with Scheme, but the enthusiastic reader will
find much depth (especially by reading the footnotes).

We begin with no assumption of programming experience, but such experience will help speed the
reader through some of the early chapters. The further we go in the tutorial, the more advanced
topics become. We will end with a real whammy: how to write a Scheme interpreter in Scheme in a
mere 30 single lines of code.

2. Setting up
You will need to choose a Scheme implementation to work with, as well as an editor. There are
many choices for each, but we will narrow our suggestions to two paths:

• Guile Scheme + GNU Emacs + Geiser: this is what this tutorial was written using, and is a
powerful option (which also opens the door to working with Guix, one of the most
interesting Scheme projects out there). However, it is also a path with a considerable
learning curve.

• Racket , which comes with a built-in IDE called DrRacket. This is an easy path to get started
with.

Some code examples are preceded by REPL>. REPL stands for "Read Eval Print Loop", which here
means an interactive scheme prompt to experiment with entering expressions.

2 In general, Scheme/Lisp programmers' editors do the work of managing parentheses for them, and most code is read
by indentation rather than by the parenthetical grouping. In other words, Lisp programmers usually don't spend
much time thinking about the parentheses at all.

However, since most programming languages don't use syntax like this, experienced programmers sometimes find
parenthetical Lisp style syntax intimidating. (In general, students totally new to programming have an easier time
learning traditional Lisp syntax than seasoned programmers unfamiliar with Lisp do.)

We've found that in running workshops introducing programming, students learning programming for the first time
don't find Lisp syntax intimidating once they start programming, but experienced programmers do because Lisp's
syntax looks alien at first sight if you know most other languages. We have even found that in teaching both Scheme
(through Racket) and Python in parallel, many students with no programming background whatsoever (the
workshops were aimed at students with a humanities background) expressed a strong preference for parenthetical
Lisp syntax because of its clarity and found it easier to write and debug given appropriate editor support (Racket
makes this easy with its newcomer-friendly IDE, DrRacket). For more about this phenomenon, see the talk Lisp but
Beautiful; Lisp for Everyone.

2

https://racket-lang.org/
https://guix.gnu.org/
https://www.nongnu.org/geiser/
https://www.gnu.org/software/emacs/
https://www.gnu.org/software/guile/
https://spritely.institute/goblins/
https://spritely.institute/
https://fosdem.org/2022/schedule/event/lispforeveryone/
https://fosdem.org/2022/schedule/event/lispforeveryone/

3. Hello Scheme!
Here's the familiar "hello world", written in Scheme:

(display "Hello world!\n")

This prints "Hello world!" to the screen. (The "\n" represents a "newline", like if you pressed
enter after typing some text in a word processor.)

If you are familiar with other programming languages, this might look a little bit familiar and a little
bit different. In most other programming languages, this might look like:

display("Hello world!\n")

In this sense, calling functions in Scheme (and other Lisps like it) is not too different than other
languages, except that the function name goes inside the parentheses.

4. Basic types, a few small functions
Unlike in some other languages, math expressions like + and - are prefix functions just like any
other function, and so they go first:

(+ 1 2) ; => 3
(/ 10 2) ; => 5
(/ 2 3) ; => 2/3

Most of these can accept multiple arguments:

(+ 1 8 10) ; equivalent to "1 + 8 + 10" in infix notation

Procedures can also be nested, and we can use the "substitution method" to see how they simplify:

(* (- 8 (/ 30 5)) 21) ; beginning expression
(* (- 8 6) 21) ; simplify: (/ 30 5) => 6
(* 2 21) ; simplify: (- 8 6) => 2
42 ; simplify: (* 2 21) => 42

A variety of types are supported. For example, here are some math types:

42 ; integer
98.6 ; floating point
2/3 ; fractions, or "rational" numbers
-42 ; these can all also be negative

Since Scheme supports both "exact" numbers like integers and fractions, and does not have any
restriction on number size, it is very good for more precise scientific and mathematical computing.
The floating point representation is considered "inexact", and throws away precision for speed.

Here are some more types:

#t ; boolean representing "true"
#f ; boolean representing "false"
"Pangalactic Gargleblaster" ; string (text)
'foo ; a quoted symbol
'(1 2 3) ; a quoted list (of numbers, in this case)
(lambda (x) (* x 2)) ; procedure (we'll come back to this)
'(lambda (x) (* x 2)) ; a list of lists, symbols, and numbers

Symbols are maybe the strangest type if you've come from non-Lisp programming languages (with
some exceptions). While symbols look kind of like strings, they represent something more
programmatic. (In Goblins' methods syntax, we use symbols to represent method names.)

3

The quote symbol ' prevents the following symbol or expression from being evaluated. If a list
itself is quoted, as in the quoted lambda expression above, the symbols inside are also not
evaluated.

We will devote some time to discussing lists in Lists and "cons". The combination of lists and
symbols is featured very prominently in many Lisps, including Scheme, because they lie at the heart
of Lisp's extensibility: code which can write code. We will see how to take advantage of this power
in On the extensibility of Scheme (and Lisps in general).

5. Variables and procedures
We can assign values to variables using define:

REPL> (define name "Jane")
REPL> (string-append "Hello " name "!")
; => "Hello Jane!"

However, if what follows define is wrapped in parentheses, Scheme interprets this as a procedure
definition:

(define (greet name)
 (string-append "Hello " name "!"))

Now that we have named this procedure we can invoke it:

REPL> (greet "Samantha")
; => "Hello Samantha!"

Note that Scheme has implicit return. By being the last expression in the procedure, the result of the
string-append is automatically returned to its caller.

This second syntax for define is actually just syntactic sugar. These two definitions of greet
are exactly the same:

(define (greet name)
 (string-append "Hello " name "!"))

(define greet
 (lambda (name)
 (string-append "Hello " name "!")))

lambda is the name for an "anonymous procedure" (ie, no name provided). While we have given
this the name greet, the procedure would be usable without it:

REPL> ((lambda (name)
 (string-append "Hello " name "!"))
 "Horace")
; => "Hello Horace!"

There is also another way to name things aside from define, which is let, which allows for a
sequence of bound variables and then a body which is evaluated with those bindings. let has the
form:

(let ((<VARIABLE-NAME> <VALUE-EXPRESSION>) ...)
 <BODY> ...)

(The ... in the above example represents that its previous expression can be repeated multiple
times.)

Here is an example of let in use:

4

REPL> (let ((name "Horace"))
 (string-append "Hello " name "!"))
; => "Hello Horace!"

Clever readers may notice that this looks very similar to the previous example, and in fact, let is
syntax sugar for a lambda which is immediately applied with arguments. The two previous code
examples are fully equivalent:

REPL> (let ((name "Horace"))
 (string-append "Hello " name "!"))
; => "Hello Horace!"
REPL> ((lambda (name)
 (string-append "Hello " name "!"))
 "Horace")
; => "Hello Horace!"

let* is like let, but allows bindings to refer to previous bindings within the expression:3

REPL> (let* ((name "Horace")
 (greeting
 (string-append "Hello " name "!\n")))
 (display greeting)) ; print greeting to screen
; prints: Hello Horace!

It is possible to manually apply a list of arguments to a procedure using apply. for example, to
sum a list of numbers, we can use apply and + in combination:

REPL> (apply + '(1 2 5))
; => 8

As the inverse of this, it is possible to capture a variable-length set of arguments using "dot
notation".4 Here we show this off while also demonstrating Guile's format (which when called
with #f as its first argument returns a formatted string as a value, and when called with #t as its
first argument prints to the screen, the latter of which is what we want here):

REPL> (define (chatty-add chatty-name . nums)
 (format #t "<~a> If you add those together you get ~a!\n"
 chatty-name (apply + nums)))
REPL> (chatty-add "Chester" 2 4 8 6)
; Prints:
; <Chester> If you add those together you get 20!

While not standard in Scheme, many Scheme implementations also support optional and keyword
arguments. Guile implements this abstraction as define*:

REPL> (define* (shopkeeper thing-to-buy
 #:optional (how-many 1)
 (cost 20)
 #:key (shopkeeper "Sammy")
 (store "Plentiful Great Produce"))
 (format #t "You walk into ~a, grab something from the shelves,\n"
 store)
 (display "and walk up to the counter.\n\n")
 (format #t "~a looks at you and says, "
 shopkeeper)

3 There is also letrec, which allows for bindings to recursively refer to each other (or themselves). Both let* and
letrec theoretically have some overhead, but a sufficiently advanced compiler can notice when either of these is
equivalent to let and optimize appropriately. If Scheme were to be specified from scratch, it might be more
sensible to just have one let which absorbs both let* and letrec. Alas, history is history.

4 This notation is directly related to the design of cons cells, which we will discuss more in Lists and "cons".

5

 (format #t "'~a ~a, eh? That'll be ~a coins!'\n"
 how-many thing-to-buy
 (* cost how-many)))
REPL> (shopkeeper "apples")
; Prints:
; You walk into Plentiful Great Produce, grab something from the shelves,
; and walk up to the counter.
;
; Sammy looks at you and says, '1 apples, eh? That'll be 20 coins!'
REPL> (shopkeeper "bananas" 10 28)
; Prints:
; You walk into Plentiful Great Produce, grab something from the shelves,
; and walk up to the counter.
;
; Sammy looks at you and says, '10 bananas, eh? That'll be 280 coins!'
REPL> (shopkeeper "screws" 3 2
 #:shopkeeper "Horace"
 #:store "Horace's Hardware")
; Prints:
; You walk into Horace's Hardware, grab something from the shelves,
; and walk up to the counter.
;
; Horace looks at you and says, '3 screws, eh? That'll be 6 coins!'

Finally, Scheme's procedures can do something else interesting: they can return multiple values
using… values! As a particularly silly example, perhaps we would like to compare what it's like
to both add and multiply two numbers:

REPL> (define (add-and-multiply x y)
 (values (+ x y)
 (* x y)))
REPL> (add-and-multiply 2 8)
; => 10
; => 16
REPL> (define-values (added multiplied)
 (add-and-multiply 3 10))
REPL> added
; => 13
REPL> multiplied
; => 30

As you can see, we can capture said values with define-values, as shown above. (let-
values and call-with-values can also be used, but that's enough new syntax for this
section!)

6. Conditionals and predicates
Sometimes we would like to test whether or not something is true. For instance, we can see whether
or not an object is a string by using the string?:5

REPL> (string? "apple")
; => #t

5 Procedures which test for truth / falseness are called predicates in Scheme. This is a bit confusing given the more
broad definition of predicates used across natural languages and mathematics where a predicate is something that
demonstrates a relationship. Technically, a test that gives a boolean value does demonstrate a relationship related to
that test, so this is not wrong, but it may be counter-intuitive depending on the reader's background.

Scheme predicates traditionally have a ? suffix attached to them. The ? suffix is conventionally pronounced "huh?",
and thus "string-huh?". In some other Lisps, a -p suffix is used in the same way Scheme uses ?.

6

REPL> (string? 128)
; => #f
REPL> (string? 'apple)
; => #f

(Remember that #t represents "true" and #f represents "false".)

We can use this in combination with if, which has the form:

(if <TEST>
 <CONSEQUENT>
 [<ALTERNATE>])

(The square brackets around <ALTERNATE> means that it is optional.)6

So, we could write a silly function that excitedly reports on whether or not an object is a string or
not:

REPL> (define (string-enthusiast obj)
 (if (string? obj)
 "Oh my gosh you gave me A STRING!!!"
 "That WASN'T A STRING AT ALL!! MORE STRINGS PLEASE!"))
REPL> (string-enthusiast "carrot")
; => "Oh my gosh you gave me A STRING!!!"
REPL> (string-enthusiast 529)
; => "That WASN'T A STRING AT ALL!! MORE STRINGS PLEASE!"

As we can see, unlike in some other popular languages, if also returns the value of evaluating
whichever branch is chosen based on <TEST>.

Scheme also ships with some mathematical comparison tests. > and < stand for "greater than" and
"less than" respectively, and >= and <= stand for "greater than or equal to" and "less than or equal
to", while = checks for numerical equality:7

6 In standard scheme, <ALTERNATE> is technically not required. However, there is a separate procedure named
when, provided by many Schemes by default, which has the form:

(when <TEST>
 <BODY> ...)

In Racket, an if without <ALTERNATE> (called a "one legged if") is not allowed, and even outside of Racket, when
is preferred in such a situation. This is also because in a purely functional programming language, there is no such
thing as calling a conditional where one possibility returns nothing of interest. In other words, it only ever makes
sense to use when (or a "one legged if") for a side effect. Distinguishing between these cases is thus useful for the
reader to observe. We will revisit when, including how to write it ourselves, in On the extensibility of Scheme (and
Lisps in general).

7 Admittedly, this is a place where Lisp's prefix notation falls short of an infix notation choice, since there is a visual
notation of size inherent in angle-bracket notation of greater-than / less-than. Some Schemes support SRFI-105:
Curly infix expressions which is a bit easier to read. Compare:

REPL> (> 8 9)
; => #f
REPL> (< 8 9)
; => #t
REPL> (> 8 8)
; => #f
REPL> (>= 8 8)
; => #t

vs:
REPL> {8 > 9}
; => #f
REPL> {8 < 9}

7

https://srfi.schemers.org/srfi-105/srfi-105.html
https://srfi.schemers.org/srfi-105/srfi-105.html

REPL> (> 8 9)
; => #f
REPL> (< 8 9)
; => #t
REPL> (> 8 8)
; => #f
REPL> (>= 8 8)
; => #t

If we wanted to test for multiple possibilities, we could use nested if statements:

REPL> (define (goldilocks n smallest-ok biggest-ok)
 (if (< n smallest-ok)
 "Too small!"
 (if (> n biggest-ok)
 "Too big!"
 "Just right!")))
REPL> (goldilocks 3 10 20)
; => "Too small!"
REPL> (goldilocks 33 10 20)
; => "Too big!"
REPL> (goldilocks 12 10 20)
; => "Just right!"

However, there is a much nicer syntax named cond which we can use instead which has the
following form:8

(cond
 (<TEST>
 <THEN-BODY> ...) ...
 [(else <ELSE-BODY> ...)])

Compare how much nicer our goldilocks procedure looks with cond instead of nested if
statements:

;; Nested "if" version
(define (goldilocks n smallest-ok biggest-ok)
 (if (< n smallest-ok)
 "Too small!"
 (if (> n biggest-ok)
 "Too big!"
 "Just right!")))

;; "cond" version
(define (goldilocks n smallest-ok biggest-ok)
 (cond
 ((< n smallest-ok)
 "Too small!")
 ((> n biggest-ok)
 "Too big!")
 (else
 "Just right!")))

; => #t
REPL> {8 > 8}
; => #f
REPL> {8 >= 8}
; => #t

8 As we will see in On the extensibility of Scheme (and Lisps in general), Scheme permits us to implement new forms
of syntax. A Scheme implementation only needs one primitive form of syntax for conditionals, since if can be
written as a simplified version of cond, and cond can be written as a nested series of if statements.

8

Scheme also provides some different ways to compare whether or not two objects are the same
thing. The shortest, simplest (but not comprehensive) summary of the zoo of equality predicates is
that equal? compares based on content equivalence, whereas eq? compares based on object
identity (as defined by the language's runtime).9 For example, list constructs a fresh list with a
new identity every time, so the following are equal? but not eq?:

REPL> (define a-list (list 1 2 3))
REPL> (define b-list (list 1 2 3))
REPL> (equal? a-list a-list)
; => #t
REPL> (eq? a-list a-list)
; => #t
REPL> (equal? a-list b-list)
; => #t
REPL> (eq? a-list b-list)
; => #f

Finally, in Scheme, anything that's not #f is considered true. This is sometimes used with
something like member, which looks for matching elements and returns the remaining list if
anything is found, and #f otherwise:

REPL> (member 'b '(a b c))
; => (b c)
REPL> (member 'z '(a b c))
; => #f
REPL> (define (fruit-sleuth fruit basket)
 (if (member fruit basket)
 "Found the fruit you're looking for!"
 "No fruit found! Gadzooks!"))
REPL> (define fruit-basket '(apple banana citron))
REPL> (fruit-sleuth 'banana fruit-basket)
; => "Found the fruit you're looking for!"
REPL> (fruit-sleuth 'pineapple fruit-basket)
; => "No fruit found! Gadzooks!"

7. Lists and "cons"
"My other CAR is a CDR" — Bumper sticker of a Lisp enthusiast

For structured data, Scheme supports lists, which can contain any other type.10 Here are two ways to
write the same list:

REPL> (list 1 2 "cat" 33.8 'foo)
; => (1 2 "cat" 33.8 foo)
REPL> '(1 2 "cat" 33.8 foo)
; => (1 2 "cat" 33.8 foo)

One difference between the two above is that in the latter quoted example, the symbol foo did not
need to be quoted, since the outer list's quoting excused everything within from being evaluated.

9 The most understated footnote in computer science appears in The Art of the Propagator by Gerald Jay Sussman and
Alexey Radul, which simply says:

Equality is a tough subject

10 Scheme also has built-in support for vectors, which are like lists but which provide the benefit of constant-time
access, but are not as useful for functional programming since they cannot easily have new elements prepended to
them. Many Scheme languages also support and provide other interesting data types, including hashmaps and user-
defined records.

9

https://dspace.mit.edu/handle/1721.1/44215

Additionally, quotes within an expression are cumulative. Notice that in the latter example, because
the entire list is quoted, the list member foo does not need to be. Adding an additional quote before
foo is legal, but may make it harder to work with the list later by needing to 'unquote' or evaluate it
many times to get the actual symbol back.

REPL> '(foo 'bar '''baz)
; => (foo (quote bar) (quote (quote (quote baz))))

There is a "special" list known as "the empty list", which is a list with no elements, simply
designated '() (also known as nil, and which is the only object which will return #t in response to
the predicate null? in standard Scheme). Lists in Scheme are actually "linked lists", which are
combinations of pairs called "cons cells" that terminate in the empty list:

REPL> '()
; => ()
REPL> (cons 'a '())
; => (a)
REPL> (cons 'a (cons 'b (cons 'c '())))
; => (a b c)

The latter of which is equivalent to either:

REPL> (list 'a 'b 'c)
; => (a b c)
REPL> '(a b c)
; => (a b c)

For very historical reasons,11 accessing the first element of a cons cell is done with car and the
second element of a cons cell with cdr (pronounced "could-er"):12

REPL> (car '(a b c))
; => a
REPL> (cdr '(a b c))
; => (b c)
REPL> (car (cdr '(a b c)))
; => b

The second member of cons does not have to be another cons cell or the empty list. If not, it is
considered a "dotted list", and has an unusual-for-lisp infix syntax:

REPL> (cons 'a 'b)

11 The name cons sensibly refers to "constructing" a pair, but the names car and cdr are a fully historical detail of
Lisp's first implementation, the former referring to "contents of the address register" and the latter the "contents of
the decrement register". It's amazing how long terms stick around, for better or worse.

For some interesting Lisp history, see:
• History of Lisp by John McCarthy
• The Evolution of Lisp by Guy L. Steele and Richard P. Gabriel
• History of LISP by Paul McJones

12 Since car and cdr are such "historical details", it's tempting to try to replace them with better names. If one is just
using lists, first and rest are very good aliases:

REPL> (first '(a b c))
; => a
REPL> (rest '(a b c))
; => (b c)
REPL> (first (rest '(a b c)))
; => b

However, in cons cells that are simply pairs like (cons 'a 'b), this makes less sense… rest returns a single
element, rather than a sequence. So it is, and the names car and cdr live on.

10

https://www.softwarepreservation.org/projects/LISP/
https://www.dreamsongs.com/Files/Hopl2.pdf
http://jmc.stanford.edu/articles/lisp.html

; => (a . b)

Notice how this is structurally different from the following:

REPL> (cons 'a (cons 'b '()))
; => (a b)

It's easy to get caught up on piecing apart cons cells (arguably schemers do far too often, but
cons is also elegantly powerful).13

In a sense, this subsection is a digression. We intentionally do not use cons too much in this paper,
and we have entirely kept car and cdr out of the main text. This may lead to the question, why
contain this subsection on lists at all?

The reason is that we are building up to something we will explore further shortly, the extensibility
of Scheme. Scheme is written in its core data types, and is modifiable as such. We will get to this
more shortly, but as an example, we can quote any expression, transforming code into data:

REPL> (+ 1 2 (- 8 4))
; => 7
REPL> '(+ 1 2 (- 8 4))
; => (+ 1 2 (- 8 4))
REPL> (let ((name "Horace"))
 (string-append "Hello " name "!"))
; => "Hello Horace!"
REPL> '(let ((name "Horace"))
 (string-append "Hello " name "!"))
; => (let ((name "Horace")) (string-append "Hello " name "!"))

This last example is especially curious: we finally see the reason for symbols in Scheme to be
important, as the function and syntax names become captured as symbols upon being quoted. In this
sense, Lisp (including Scheme) is written in Lisp: there is little distinction between the
representation the programmer sees and the representation the compiler sees, as see in On the
extensibility of Scheme (and Lisps in general).

By the way, the apostrophe quote is just a shorthand for (quote <EXPR>):

;; these two are the same
'foo
(quote foo)

;; and these two are the same
'(lambda (x) (* x 2))
(quote (lambda (x) (* x 2)))

Lists can also be used as an associative mapping between keys and values, called alists (association
lists). A variety of procedures for convenient lookup exist, such as assoc, which returns the pair if
found or #f if not:

REPL> (define animal-noises
 '((cat . meow)
 (dog . woof)
 (sheep . baa)))
REPL> (assoc 'cat animal-noises)
; => (cat . meow)
REPL> (assoc 'alien animal-noises)
; => #f

13 Much else can be said about cons, "the magnificent" (as well as how to develop an intuitive sense of recursion)
read The Little Schemer.

11

https://mitpress.mit.edu/books/little-schemer-fourth-edition

Association lists are easy to implement, look nice enough in Scheme's printed representation, and
are easy to use with functional programming. (Want to add more to an alist? Just cons on another
cons cell!) This means they tend to be popular with schemers. However, they are not always
efficient. While assoc is fine for small alists, an alist that is one thousand elements long will take
one thousand steps to find a key-value pair buried at its bottom. Other datastructures, such as
hashmaps which provide constant-time average lookups, are commonly provided in many Scheme
implementations, and are sometimes a better choice.

Aside from quote, it is also possible to use quasiquote, which uses the backtick to begin a
quasiquote, and the comma to unquote. In this way we can move quickly between the world of data
and code. For example, using a somewhat apocryphal metric for converting cat years to human
years:

REPL> (define (cat-years years)
 (cond
 ((<= years 1) ; first year equivalent to 15
 (* years 15))
 ((<= years 2)
 (+ 15 (* 9 (- years 1)))) ; second year 9
 (else
 (+ 24 (* 4 (- years 2)))))) ; years after that 4
REPL> (define (cat-entry name age)
 `(cat (name ,name)
 (age ,age)
 (cat-years-age ,(cat-years age))))
REPL> (cat-entry "Missy Rose" 16)
; => (cat (name "Missy Rose")
; (age 16)
; (cat-years-age 80))
REPL> (cat-entry "Kelsey" 22)
; => (cat (name "Kelsey")
; (age 21)
; (cat-years-age 104))

Wow! Those are some old cats!

8. Closures
Recall our earlier definition and use of goldilocks:

REPL> (define (goldilocks n smallest-ok biggest-ok)
 (cond
 ((< n smallest-ok)
 "Too small!")
 ((> n biggest-ok)
 "Too big!")
 (else
 "Just right!")))
REPL> (goldilocks 3 10 20)
; => "Too small!"
REPL> (goldilocks 33 10 20)
; => "Too big!"
REPL> (goldilocks 12 10 20)
; => "Just right!"

Entering the same values for smallest-ok and biggest-ok over and over again is tedious.
Goldilocks' range of preferences are unlikely to change from invocation to invocation. Is there a
way we could produce a version of Goldilocks with a kind of memory so we only have to pass in

12

smallest-ok and biggest-ok once but still test against multiple versions of n? Indeed there
is… closures to the rescue!

(define (make-goldilocks smallest-ok biggest-ok)
 (define (goldilocks n) ; make a procedure which encloses
 (cond ; smallest-ok and biggest-ok so
 ((< n smallest-ok) ; that only the n argument needs
 "Too small!") ; to be passed in
 ((> n biggest-ok)
 "Too big!")
 (else
 "Just right!")))
 goldilocks) ; return goldilocks procedure

We can now invoke make-goldilocks, which returns the enclosed goldilocks procedure14.

REPL> (make-goldilocks 10 30)
; => #<procedure goldilocks (n)>

Now we can call the inner goldilocks over and over again.

REPL> (define goldi
 (make-goldilocks 10 30))
REPL> (goldi 7)
; => "Too small!"
REPL> (goldi 256)
; => "Too big!"
REPL> (goldi 22)
; => "Just right!"

The outer procedure "closes over" the inner procedure, giving it access to (and a memory of)
smallest-ok and biggest-ok.

Notably, this is the same pattern Goblins uses to implement constructors for its objects: the outer
procedure is the constructor, the inner procedure is the behavior of the object. (The primary
difference is indeed that Goblins objects spawned with spawn get a bcom capability which they
can use to change their behavior!)

Beautifully, we can also build our own cons cells out of pure abstraction using this same technique.

REPL> (define (abstract-cons car-data cdr-data)
 (lambda (method)
 (cond
 ((eq? method 'car)
 car-data)
 ((eq? method 'cdr)
 cdr-data)
 (else (error "Unknown method:" method)))))
REPL> (define our-cons (abstract-cons 'foo 'bar))
REPL> (our-cons 'car)
; => foo
REPL> (our-cons 'cdr)
; => bar

14 In the make-goldilocks procedure, we made an inner named procedure. While there is nothing technically wrong
with using a lambda expression here, the implicitly returned procedure from (make-goldilocks 10 30)
would be anonymous and it would be harder to understand what it actually does.

REPL> (make-goldilocks 10 30) ;; using lambda
; => #<procedure 78d86f615b80 at <unknown port>:27:2 (n)>
REPL> (make-goldilocks 10 30) ;; using define
; => #<procedure goldilocks (n)>

13

In this sense, closures are also data structures built from the code flow of the program itself.

Closures are a property of lexical scoping. We take advantage of this in Goblins: the capabilities an
object has access to is merely the capabilities it has within its behavior's scope.

9. Iteration and recursion
Much of programming involves sequences of operations, especially on datastructures which contain
other information. One especially useful procedure for functional programming which operates on
lists is map, which applies its first argument's procedure to each element in its series.

For example, string-length gives the number of characters which exist in a given string:

REPL> (string-length "cat")
; => 3
REPL> (string-length "gorilla")
; => 7

So, using map, we could easily construct a list representing the length of each of its strings:

REPL> (map string-length '("cat" "dog" "gorilla" "salamander"))
; => (3 3 7 10)

We could also supply a procedure we define:

REPL> (define (symbol-length sym)
 (string-length (symbol->string sym)))
REPL> (map symbol-length '(basil oregano parsley thyme))
; => (5 7 7 5)

In fact, there is no requirement that we name the procedure… we can use lambda to construct an
anonymous procedure which we pass to map directly:

REPL> (map (lambda (str)
 (string-append "I just love "
 (string-upcase str)
 "!!!"))
 '("strawberries" "bananas" "grapes"))
; => ("I just love STRAWBERRIES!!!"
; "I just love BANANAS!!!"
; "I just love GRAPES!!!")

map performs some extra work by building up a list of results every time. But what if we wanted to
simply display our love of some food to the screen using display and did not care about
operating on the data any further? We could use for-each, which has the same structure as map
but does not build a result:

REPL> (for-each (lambda (str)
 (display
 (string-append "I just love "
 (string-upcase str)
 "!!!\n")))
 '("ice cream" "fudge" "cookies"))
; prints:
; I just love ICE CREAM!!!
; I just love FUDGE!!!
; I just love COOKIES!!!

NOTE! The following text in this subsection, indeed in the rest of the Scheme tutorial, is beyond
anything required to understand the main body of our paper "The Heart of Spritely"! However, it

14

will significantly advance a newcomer's understanding of Scheme.

Scheme has the surprising property that iteration is actually defined in terms of recursion!

Here is what we mean. We could define our own version of for-each:

(define (for-each proc lst)
 (if (eq? lst '()) ; End of the list?
 'done ; We're done, so simply return "done"
 (let ((item (car lst))) ; Otherwise... let's fetch this item
 (proc item) ; Call the procedure with this item
 (for-each proc (cdr lst))))) ; Iterate with the remaining work

This calls proc successively with each item from lst until it runs out of items. If you have
experience with other programming languages, your expectation would probably be that this design
could accidentally "blow the stack". However, Scheme is smart: it sees that there is no more work
left to be done within the current version of for-each once we reach the last line… in other
words, where for-each calls itself is in the "tail position". Because of this, Scheme is able to skip
allocating a new frame on the stack and "jump" back to the beginning of for-each again with the
new variables allocated. This is called tail call elimination and all iteration facilities are
actually defined this way in terms of recursion in Scheme.

It is also possible to build tree-recursive procedures. The following (somewhat advanced, if you
don't follow this it's ok) procedure builds a binary tree:

(define (build-tree depth)
 (if (= depth 0)
 '(0)
 (list depth
 (build-tree (- depth 1))
 (build-tree (- depth 1)))))

REPL> (build-tree 3)
; => (3 (2 (1 (0)
; (0))
; (1 (0)
; (0)))
; (2 (1 (0)
; (0))
; (1 (0)
; (0))))

Or, better visualized:

 3
 / \
 / \
 2 2
 / \ / \
 1 1 1 1
 /\ /\ /\ /\
0 0 0 0 0 0 0 0

However, unlike for-each, build-tree does not call itself in the tail position. There is no way
to simply "jump" to the beginning of the procedure without allocating work to be done on the stack
with the way this code is written: more work needs to be done, as list sits waiting for its results.
As such, unlike for-each, build-tree is recursive but not iterative.

Finally, come conveniences. Here are two variants on let, both useful for recursive and iterative
procedures. The first is letrec which allows for procedures to call and refer to themselves or

15

others defined by the letrec, regardless of definition ordering:

REPL> (letrec ((alice
 (lambda (first?)
 (report-status "Alice" first?)
 (if first? (bob #f))))
 (bob
 (lambda (first?)
 (report-status "Bob" first?)
 (if first? (alice #f))))
 (report-status
 (lambda (name first?)
 (display
 (string-append name " is "
 (if first?
 "first"
 "second")
 "!\n")))))
 (alice #t)
 (display "-----\n")
 (bob #t))
; prints:
; Alice is first!
; Bob is second!
; -----
; Bob is first!
; Alice is second!

The second useful abstraction is the named let variant of let, where a looping name identifier
appears as the first argument:

REPL> (let loop ((words '("carrot" "potato" "pea" "celery"))
 (num-words 0)
 (num-chars 0))
 (if (eq? words '())
 (format #f "We found ~a words and ~a chars!"
 num-words num-chars)
 (loop (cdr words)
 (+ num-words 1)
 (+ num-chars (string-length (car words))))))
; => "We found 4 words and 21 chars!"

What a named let does is define the named procedure (here named loop) and immediately invokes
it with the initial bindings of the let. The procedure is available within the body of the let for
convenient recursive (perhaps iterative) calls.

10. Mutation, assignment, and other kinds of side effects
This section is included for completeness. Notably, Goblins provides a different approach to much
of this here which we will discuss towards the end.

Scheme ships with a way to reassign the current value of a variable using set!:

REPL> (define chest 'sword)
REPL> chest
; => sword
REPL> (set! chest 'gold)
REPL> chest
; => gold

16

This can even be combined with the techniques shown in Closures. For instance, here's an example
of an object that counts down from an initial number n until it reaches its zero, and then always
returns zero afterwards.

REPL> (define (make-countdown n)
 (lambda ()
 (define last-n n)
 (if (zero? n)
 0
 (begin
 (set! n (- n 1))
 last-n))))
REPL> (define cdown (make-countdown 3))
REPL> (cdown)
; => 3
REPL> (cdown)
; => 2
REPL> (cdown)
; => 1
REPL> (cdown)
; => 0
REPL> (cdown)
; => 0

There are several interesting things about this example:

• We have introduced time and change into our computations. Before the introduction of side
effects such as assignment, calling a procedure with the same arguments will always
produce the same result. But in the above example, cdown changes its response over time
(even without being passed any arguments on invocation).

• Since we want to show the initial number the first time the procedure is called, we have to
capture last-n before using set! to change n. If we accidentally reverse this order, we
will introduce a bug where cdown would have started with 2 instead of 3 in the example
above.

• Here we also see an interesting new piece of syntax: begin. begin executes several
expressions in sequence, returning the value of the last expression.

This last one is interesting. Prior to introducing effects (such as the assignment shown above,
displaying to the screen, logging to a file or database, etc), there is never any reason for begin. To
understand this, recall the substitution method demonstrated at the beginning of this tutorial:

(* (- 8 (/ 30 5)) 21) ; beginning expression
(* (- 8 6) 21) ; simplify: (/ 30 5) => 6
(* 2 21) ; simplify: (- 8 6) => 2
42 ; simplify: (* 2 21) => 42

Before effects, every procedure invoked is to compute a new part of the program. But since each
branch of if only evaluates one expression, we must provide a way to sequence the alternate
clause so that we can both set! and then return a value.15 In other words, a purely functional
program is really built to take a series of inputs and precisely compute a value, the same value,
every time. This is a clean set of substitutions all the way up and down the evaluation. (In other
worlds, before introducing time, we will have programs which are fully deterministic.)

However, by introducing mutation and side effects, we have introduced a powerful, but dangerous,

15 Notably, cond does permit multiple expressions in its <THEN-BODY> / <ELSE-BODY> sections, but we can think
of this as cond being written to contain begin.

17

new construct into our program: time. Our programs are no longer purely functional, time has made
them imperative: do this, then do that. Time is change, and change requires sequences of events, not
mere substitutions. And time means that the same programs and procedures run with the same
inputs will not always produce the same outputs. We have traded a timeless world for one that
changes.

Despite the caution, change can be desirable. We live in a world with time and change, and so too
often do our programs. Scheme has a (somewhat inconsistent) naming convention for observing
time and change: the addition of a ! suffix, as we have seen with set!. The ! can be seen as a kind
of warning, as if the user is shouting about the possibility of mutation. (However, the runtime of
Scheme provides no guarantee that the presence or absence of this suffix says anything about
mutation whatsoever.)

However, set! is not the only form of change and mutation available in standard (and
nonstandard) Scheme.16 Another example is mutable vectors and vector-set!:

REPL> (define vec (vector 'a 'b 'c))
REPL> vec
; => #(a b c)
REPL> (vector-ref vec 1)
; => b
REPL> (vector-set! vec 1 'boop)
REPL> (vector-ref vec 1)
; => boop
REPL> vec
; => #(a boop c)

Both of these examples resemble mutation. However, we have already seen a different form of side
effects in this tutorial, namely display, which writes to the screen. In fact, display itself builds
on the idea of ports, which are mechanisms in Scheme for reading and writing from and to input
and output devices.

All of these carry the same challenges of set!. Put simply, the introduction of ambient time makes
our programs less timeless. However, if turns out that we cannot remove all time and change from
our computers, as illustrated in this nested set of quotes:

As Simon Peyton Jones, a well-known functional programmer, likes to say, "All you can
do without side effects is push a button and watch the box get hot for a while." (Which
isn't technically true, since even the box getting hot is a side effect.)

— From Land of Lisp by Conrad Barski, M.D.

As Simon and Conrad point out, the challenge with functional programming is that even though
side effects can be dangerous, they are in a sense all the user really cares about. At some point, in
order for a computer to be useful, input must be read from the user and output must be given back,
and these are inherently side-effectful. Even using the radiant heat of a busy computer to warm your
house is a side effect. At some point, we must both enter and leave the realm of pure mathlandia.17

16 The ambient availability of set! creates problems for Scheme programs which should be confined. The interested
reader should observe the alternative approach in the W7 variant of Scheme from A Security Kernel Based on the
Lambda Calculus.

17 Functional programmers sometimes solve this with a clever trick called monads. Monads will not be covered in this
tutorial, but they can be thought of as a clever and explicit form of handling time by threading a bundle of state
through an otherwise stateless program. This provides enormous power: time exists, but in a deterministic manner:
the programmer becomes a time lord. However, they come at some cost, by exposing plumbing outward to the
programmer.

Goblins takes an alternate approach, as discussed in Turns are cheap transactions and Time-travel distributed

18

https://spritely.institute/static/papers/spritely-core.html#time-travel-distributed-debugging
https://spritely.institute/static/papers/spritely-core.html#turns-are-cheap-transactions
http://mumble.net/~jar/pubs/secureos/secureos.html
http://mumble.net/~jar/pubs/secureos/secureos.html

11. On the extensibility of Scheme (and Lisps in general)
Let's say we'd like some new syntax. For instance, maybe we want to run multiple pieces of code in
sequence when a condition is met. We could write:

(if (our-test)
 (begin
 (do-thing-1)
 (do-thing-2)))

But this is kind of ugly. What if we created some new syntax specifically for this purpose?

(when (our-test)
 (do-thing-1)
 (do-thing-2))

when cannot be built as a function because we do not want to execute (do-thing-1) or (do-
thing-2) unless (our-test) passes. We need new syntax.

Could we build the new syntax ourselves? Remembering that we can "write Lisp in Lisp", the
answer seems to be yes:

REPL> (define (when test . body)
 `(if ,test
 ,(cons 'begin body)))
REPL> (when '(our-test)
 '(do-thing-1)
 '(do-thing-2))
; => (if (our-test)
; (begin
; (do-thing-1)
; (do-thing-2)))

This does build out the appropriate syntax! And it does demonstrate that our claim that Lisp can
"write code which writes code" is indeed true.18

However, there are two obvious problems with this first attempt:

• We had to quote each argument passed to when. This is annoying to do.

• when does not actually run its code, it just returns the quoted structure that the code should
expand to.

However, with just one tweak our procedure can be turned into a "macro": a special kind of
procedure used by the compiler to expand code. Here is all we need to do:

(define-macro (when test . body)
 `(if ,test
 ,(cons 'begin body)))

All we needed to do was rename define to define-macro! Now Scheme knows it should use
this for code expansion. This allows us to define new kinds of syntax forms.

debugging. By capturing the nature of change within turns, the programmer gains the ability to traverse time. With
language level safety features, as discussed in Application safety, library safety, and beyond, fully deterministic and
contained execution can be guaranteed. All this can be done by abstracting the details of managing change such that
the user need not think of them; the Goblins core kernel can take care of this for the user. This will be expanded
upon in detail within a future paper.

18 Since Lisp's abstract syntax tree is written in same datastructures used by its users for programming and is visually
represented in its surface syntax in those same structures, it is called homoiconic. Homoiconicity is one of the most
distinguishing pieces of Lisp, leading to much of its extensibility.

19

https://spritely.institute/static/papers/spritely-core.html#application-library-safety
https://spritely.institute/static/papers/spritely-core.html#time-travel-distributed-debugging

define-macro shows very clearly what macros in Lisp and Scheme do: they operate on
structure. Manually building up a list structure like this is how macros in Common Lisp work.
However, this is not the general way to write macros in Scheme. Scheme macros look very similar
though:

(define-syntax-rule (when test body ...)
 (if test
 (begin body ...)))

define-syntax-rule uses pattern matching to implement macros. The first argument to
define-syntax-rule describes the pattern which the user will enter, and the second describes
the template which will be expanded.19 We can also notice that body ... appears in both the
pattern and the template; the ... ellipsis in the pattern represents that multiple expressions will be
captured from the user's input and the ... in the template indicates where the repeating should
occur. We can see that we do not need to manually quote things using this mechanism; Scheme
cleverly takes care of it for us.

Ultimately, the Scheme version of syntax definitions is less obvious as to how it works under the
hood than the define-macro version is. However, there is an issue that arrives in syntax
transformation systems called hygiene: that a syntax form / macro not introduce unexpected
temporary identifiers into the body of the form it expands into. We will not get into the debate in
this primer, but both Common Lisp and Scheme's macros have significant tradeoffs, with Scheme
being much more likely to be properly "hygienic", easier to write for simple syntax forms, but
harder to write for more complicated ones, and less obvious as to how they work under the hood.
For this reason, even though you will likely never use the define-macro approach in Scheme, it
is a useful way to understand the idea behind "code that writes code".

Now that we know how to produce new syntax the Scheme way, let's see if we can make our life
more convenient than before. Let's revisit our use of for-each from earlier:

REPL> (for-each (lambda (str)
 (display
 (string-append "I just love "
 (string-upcase str)
 "!!!\n")))

19 Actually, define-syntax-rule is itself sugar. The following are equivalent:
(define-syntax-rule (when test body ...)
 (if test
 (begin body ...)))

(define-syntax when
 (syntax-rules ()
 ((when test body ...)
 (if test
 (begin body ...)))))

Indeed, we can build define-syntax-rule out of define-syntax and syntax-rules:
(define-syntax define-syntax-rule
 (syntax-rules ()
 ((define-syntax-rule (id pattern ...) template)
 (define-syntax id
 (syntax-rules ()
 ((id pattern ...)
 template))))))

There is a zoo of other syntax transformation syntax forms available in most Schemes, and many of them vary across
Scheme implementations, though define-syntax and syntax-rules are part of the Scheme standard.

20

 '("strawberries" "bananas" "grapes"))
; prints:
; I just love STRAWBERRIES!!!
; I just love BANANAS!!!
; I just love GRAPES!!!

This works, but it is also unnecessarily tedious. That lambda is an unnecessary piece of detail! A
small new syntax definition lets us clean things up:

(define-syntax-rule (for (item lst) body ...)
 (for-each (lambda (item)
 body ...)
 lst))

Let's give it a try:

REPL> (for (str '("strawberries" "bananas" "grapes"))
 (display
 (string-append "I just love "
 (string-upcase str)
 "!!!\n")))
; prints:
; I just love STRAWBERRIES!!!
; I just love BANANAS!!!
; I just love GRAPES!!!

It works! This is much easier to read.20

We need not stop here. The methods feature in Spritely Goblins is an example of a macro. Here is
a simplified version:

(define-syntax-rule (methods ((method-id method-args ...)
 body ...) ...)
 (lambda (method . args)
 (letrec ((method-id
 (lambda (method-args ...)
 body ...)) ...)
 (cond
 ((eq? method (quote method-id))
 (apply method-id args)) ...
 (else
 (error "No such method:" method))))))

We can both see here simultaneously how expressive Scheme style pattern matching examples are,
but also how with multiple layers of ellipses (the ...), it can be a bit challenging to see how the
code expander is figuring out how to unpack things.

But let's not worry about that for now, and instead show an example of usage:

20 A fun exercise for the reader: try to implement a C-style for loop!
Here's the C version:
// C's version of for:
// for (init; condition; increment) {
// statement(s);
// }
for (i = 0; i < 10; i = i + 2) {
 printf("i is: %d\n", i);
}

Try to make the following work:
(for ((i 0) (< i 10) (+ i 2))
 (display (string-append "i is: " (number->string i) "\n")))

21

REPL> (define (make-enemy name hp)
 (methods
 ((get-name)
 name)
 ((damage-me weapon hp-lost)
 (cond
 ((dead?)
 (format #t "Poor ~a is already dead!\n" name))
 (else
 (set! hp (- hp hp-lost))
 (format #t "You attack ~a, doing ~a damage!\n"
 name hp-lost))))
 ((dead?)
 (<= hp 0))))
REPL> (define hobgob
 (make-enemy "Hobgoblin" 25))
REPL> (hobgob 'get-name)
; => "Hobgoblin"
REPL> (hobgob 'dead?)
; => #f
REPL> (hobgob 'damage-me "club" 10)
; prints: You attack Hobgoblin, doing 10 damage!
REPL> (hobgob 'damage-me "sword" 20)
; prints: You attack Hobgoblin, doing 20 damage!
REPL> (hobgob 'damage-me "pickle" 2)
; prints: Poor Hobgoblin is already dead!
REPL> (hobgob 'dead?)
; => #t

We can go further. We can extend Scheme to include logic programming, we can add pattern
matching, etc etc etc. Indeed, we will use a pattern matching system included in Guile's standard
library in the next subsection.

Because of the syntactic extensibility of Lisp/Scheme, advanced programming language features
can be implemented as libraries rather than as entirely separate sub-languages. Multiple problem
domains can be combined into one system. For this reason, we say that languages in the Lisp
language family support composable domain specific languages.

It is also liberating. In other programming languages, users must pray at the altar of the
programming language implementers for features to show up in the next official language release,
features which would be only a few small and simple lines of code in the hand of a Lisp/Scheme
user.

This is true power. But there is more. In the next section we will unlock Scheme itself, allowing us
to configure and experiment with its underlying mechanisms, in a surprisingly compact amount of
code.

12. Scheme in Scheme
Here is a working implementation of Scheme written in Scheme:

(use-modules (ice-9 match))

(define (env-lookup env name)
 (match (assoc name env)
 ((_key . val)
 val)
 (_
 (error "Variable unbound:" name))))

22

https://wingolog.org/archives/2011/08/30/the-gnu-extension-language
https://wingolog.org/archives/2011/08/30/the-gnu-extension-language
http://minikanren.org/

(define (extend-env env names vals)
 (if (eq? names '())
 env
 (cons (cons (car names) (car vals))
 (extend-env env (cdr names) (cdr vals)))))

(define (evaluate expr env)
 (match expr
 ;; Support builtin types
 ((or #t #f (? number?))
 expr)
 ;; Quoting
 (('quote quoted-expr)
 quoted-expr)
 ;; Variable lookup
 ((? symbol? name)
 (env-lookup env name))
 ;; Conditionals
 (('if test consequent alternate)
 (if (evaluate test env)
 (evaluate consequent env)
 (evaluate alternate env)))
 ;; Lambdas (Procedures)
 (('lambda (args ...) body)
 (lambda (. vals)
 (evaluate body (extend-env env args vals))))
 ;; Procedure Invocation (Application)
 ((proc-expr arg-exprs ...)
 (apply (evaluate proc-expr env)
 (map (lambda (arg-expr)
 (evaluate arg-expr env))
 arg-exprs)))))

Without comments, blank lines, and the pattern matching import at the top (not necessary, but
convenient), this is a mere 30 lines of code. This evaluator, while bare bones, is complete enough to
be able to compute anything we can imagine. (You could even write another similar Scheme
evaluator on top of this one!)21

Our evaluator takes two arguments, a Scheme expression expr and an environment env. Scheme's
lispy structure is of great benefit here, since as we have learned we can easily quote entire sections
of code. (Indeed, that is exactly what we are going to do.) The env of the second argument is an
association list mapping symbols for names and their associated procedures.

Seeing is believing. Let's do some simple arithmetic, passing in some procedures to the default
environment which can do some math:

(define math-env
 `((+ . ,+)
 (- . ,-)
 (* . ,*)
 (/ . ,/)))

As we can see, the first "substitution method" example we wrote works just fine using this
environment:

REPL> (evaluate '(* (- 8 (/ 30 5)) 21)

21 This idea of implementing a language on top of a similar host language is called a "metacircular evaluator". It is
popular amongst computer science researchers as a way to explore variants of programming language design
without needing to reinvent the entire system.

23

 math-env)
; => 42

What do you know, that's the same answer we got in our own program!

We can also make a lambda and apply it. Let's make one that can square a number:

REPL> (evaluate '((lambda (x)
 (* x x))
 4)
 math-env)
; => 16

Nice, works perfectly.

Let's do something more advanced. Supplying only two operators, + and =, we are able to compute
the Fibonacci sequence:

REPL> (define fib-program
 '((lambda (prog arg) ; boot
 (prog prog arg))
 (lambda (fib n) ; main program
 (if (= n 0)
 0
 (if (= n 1)
 1
 (+ (fib fib (+ n -1))
 (fib fib (+ n -2))))))
 10)) ; argument
REPL> (define fib-env
 `((+ . ,+)
 (= . ,=)))
REPL> (evaluate fib-program fib-env)
; => 55

This seems like magic. But it works! The evaluator really is performing the underlying
computation, using merely addition (on both positive and negative numbers) and numeric equality
check procedures, which we have provided.

The main program needs to be able to call itself, so the first procedure (labeled boot) takes a
program and an argument and invokes the procedure with itself and that argument.22 The second
procedure (labeled main program) takes itself as the argument fib (supplied by our boot
procedure) as well as an argument of n (also supplied by the boot procedure)… and it works! Our
evaluator recursively builds up the Fibonacci sequence.

Our evaluator can also be easily understood. Let us break it down section by section.

(define (env-lookup env name)
 (match (assoc name env)
 ((_key . val)

22 This is a sophisticated example to demonstrate, with an interesting challenge to it: Fibonacci, as we have
implemented it, is self-recursive! But self-recursion usually involves a feature like letrec, which we have not
provided. To get around this, the main program (the second procedure) is passed to itself via the first procedure.
Hence the comment calling the first procedure "boot".

This is kind of a cheap version of the Y combinator's bootstrapping technique. (No, not the company that starts startups,
but now you can understand how that organization got its name.) The Y combinator performs the same trick but is
more general. In many ways, evaluators like the one we have written have a lot in common with Y. The Why of Y is
a lovely and concise article on the Y combinator and how one could derive it from a practical need, similar to the
one we have demonstrated above. The Little Schemer also ends its lovely journey with writing a metacircular
evaluator, similar to the one above, and explores how one might derive Y.

24

https://mitpress.mit.edu/books/little-schemer-fourth-edition
https://dreamsongs.com/Files/WhyOfY.pdf
https://en.wikipedia.org/wiki/Fixed-point_combinator#Y_combinator

 val)
 (_
 (error "Variable unbound:" name))))

This one is easy. We are defining environments as association lists, so all env-lookup does is
search for a matching name in the list. Newer additions will be found first, meaning that the same
name defined in a deeper scope will shadow the parent scope. This can be seen by usage:

REPL> (env-lookup '((foo . newer-foo)
 (bar . bar)
 (foo . older-foo))
 'foo)
; => 'newer-foo

The next one is a utility:

(define (extend-env env names vals)
 (if (eq? names '())
 env
 (cons (cons (car names) (car vals))
 (extend-env env (cdr names) (cdr vals)))))

extend-env takes an environment and a list of names and a parallel list of values. This is a
convenience which we will use in procedure definitions later. Once again, easily understood by
usage:

REPL> (extend-env '((foo . foo-val))
 '(bar quux)
 '(bar-val quux-val))
; => ((bar . bar-val)
; (quux . quux-val)
; (foo . foo-val))

And now we are onto the evaluator. The shell of evaluate looks like so:

(define (evaluate expr env)
 (match expr
 (<MATCH-PATTERN>
 <MATCH-BODY> ...) ...))

evaluate takes two arguments:

• expr: the expression to evaluate

• env: the environment in which we will evaluate the expression

For the body of evaluate, we are dispatching our behavior depending on which patterns match
expr. We are using match from Guile's pattern matching syntax (which came from our module
import at the top). The short of it is though that if a <MATCH-PATTERN> matches, we will then
stop searching for matches and evaluate <MATCH-BODY> (possibly with bindings set up from the
<MATCH-PATTERN>).

So, now all we need to do is look at each pattern we support. The first is easy:

;; Support builtin types
((or #t #f (? number?))
 expr)

The or says we can match any one of its contained patterns. The first two are literally the true and
false values from Scheme itself. The parentheses starting with a ? symbol indicates that we will try
matching against a predicate, in this case number?. If any of these match, we simply return the

25

https://www.gnu.org/software/guile/manual/html_node/Pattern-Matching.html

very same expr we are matching against… borrowing booleans and numbers straight from the
underlying Scheme implementation.

In other words, the above powers:

REPL> (evaluate #t '())
; => #t
REPL> (evaluate #f '())
; => #f
REPL> (evaluate 33 '())
; => 33
REPL> (evaluate -2/3 '())
; => -2/3

That was easy! The next one is also easy:

;; Quoting
(('quote quoted-expr)
 quoted-expr)

Recall that 'foo is just shorthand for (quote foo), and likewise '(1 2 3) is shorthand for
(quote (1 2 3)). In this pattern, we look for anything matching a list starting with the
'quote symbol and a second element which is the expression to be quoted.

In other words, the above powers:

REPL> (evaluate ''foo '())
; => foo
REPL> (evaluate ''(1 2 3) '())
; => (1 2 3)
REPL> (evaluate (quote (quote (1 2 3))) '())
; => (1 2 3)

Those last two are the same. Note that we quote twice: once for quoting the entire program to be
run, and once within the quoted program to say we want to quote an expression.

So far so good. The next one is still quite easy:

;; Variable lookup
((? symbol? name)
 (env-lookup env name))

The (? symbol? name) part binds name to the matching component. (In this case, name will
be bound to the same value as the expr matched against, but this improves readability a little.)

As for the body… why, this is quite simple! We have already reviewed how env-lookup works.
In other words if we see a symbol (not a quoted one of course, that has already been handled), we
look up its corresponding value in the environment.

In other words, the above powers:

REPL> (evaluate 'x '((x . 33)))
; => 33

However, it will also empower variable lookups we define through lambda applications:

REPL> (evaluate '((lambda (x) x) 33) '())
; => 33

Of course, we have not yet gotten to lambda! But we are nearly there.

The next one, conditionals, also turns out to be fairly easy:

26

;; Conditionals
(('if test consequent alternate)
 (if (evaluate test env)
 (evaluate consequent env)
 (evaluate alternate env)))

In other words, a list starting with the symbol 'if will be matched, with the three sub-expressions
following 'if bound to the variables test, consequent, and alternate in the match body.
We use the underlying Scheme if, and first evaluate test against the current environment env
(notice the recursion!), and the host Scheme's if helps us whether to evaluate the consequent or
alternate inside of env, again using evaluate recursively.

Okay, now it's time to build procedures. This one is a little bit more complicated, but ultimately not
too complicated either:

;; Lambdas (Procedures)
(('lambda (args ...) body)
 (lambda (. vals)
 (evaluate body (extend-env env args vals))))

The pattern here looks for a list starting with 'lambda, with the second list member being the set
of arguments, with the body being captured as, well, body. We then return a procedure which is
ready to be evaluated with the same number of arguments.23 The inner body of the procedure we
return recursively calls evaluate against the body expression of the lambda we are matching
against, but with a newly extended environment, binding together the names within args and the
vals from the procedure invocation.24

In other words, the above powers:

REPL> ((evaluate '(lambda (x y) x) '())
 'first 'second)
; => first
REPL> ((evaluate '(lambda (x y) y) '())
 'first 'second)
; => second

There is only one more piece left… application!

;; Procedure Invocation (Application)
((proc-expr arg-exprs ...)
 (apply (evaluate proc-expr env)
 (map (lambda (arg-expr)
 (evaluate arg-expr env))
 arg-exprs)))

This is the general-purpose procedure application piece of the puzzle! At this point, the pattern will
match any list with one or more items, determining that this must mean a procedure applied to

23 If a user invokes this procedure with the wrong number of arguments, it will cause an error, but not a particularly
useful one. Try figuring out how to give it a better one. (Hint: if args and vals aren't the same length,
something is wrong!)

24 This is where the choice is made between lexical and dynamic scoping. The environment which is extended is not
the environment of the caller, but the environment of the previous expression in which this lambda was defined…
this is how we achieve the functionality described in the closures section.

In a sense, the "lexical scope" is explicitly set in the procedure's written definition, is capability secure, and preserves
the "if you don't have it, you can't use it" property. "Dynamic scope" is instead "scope is defined by the invoker"
(and their parent invokers, all the way up the stack of current invocations) and is implicit, but also ambient including
in the ambient authority sense, making dynamic scope suffer more serious security issues (and not coincidentally,
more strongly resemble access control list systems).

27

arguments. We evaluate the proc-expr, representing the procedure to be evaluated, within the
current arguments, calling evaluate recursively with the current environment, env. We also
gather all the arg-expr argument expressions passed to this procedure by calling evaluate
recursively on each with the current environment, env25.

In other words, the above powers:

REPL> (evaluate '(* (- 8 (/ 30 5)) 21)
 math-env)
; => 42

And with all pieces combined, we have enough power not only to compute the Fibonacci sequence,
but any computable problem imaginable!

To be fair, this does borrow a portion of Scheme's underlying power, but not as much as it may
appear… certainly less than many languages implemented on top of other languages do (certainly,
certainly far less than Clojure borrows from Java, for instance, or nearly any popular language
borrows from C's standard library).26 And it is not so complete as to implement any of the Scheme
standards. But without too much extra work, we could get there, and it is enough for demonstration.
But we also get to choose how much power we give the language, by modifying the initial
environment the code evaluates in.

It is also a capability-secure language! Aside from going into an infinite loop and consuming too
many resources in terms of memory or CPU power, there is nothing particularly dangerous this
language can do. However, we can decide how much power we would like to give it. If we choose,
we can provide an environment with mutable cells, or one with access to the filesystem. The choice
is ours.

And with tiny tweaks, our evaluator can operate in different and marvelous ways. We can add new
syntax. We can add new syntax to add new syntax (macros)! We can change evaluation order, we
can add static type analysis, we can do many things.

We promised that you would have learned Scheme from this tutorial. If you have reached this point,

25 Aha! Now we can understand what is meant by metacircular! The following ASCII art is a tribute to metacircular
iconography as it appears in SICP:

\'.
 \ '. .-****-.
 \ \ * _*
 _L__L_ _ * EVAL .' *
 //~ ~ / / *.___.' *
 G > // '. APPLY.'
 / \\\\-------.,// *.____.*
 / ' ______ |;3
| \ \\ \//

This is clear from looking at the last two match clauses (procedures and applications) and how they cooperate. Eval
calls apply, which calls eval, which calls apply, which calls eval, until a "fixed point" is reached (our computation
produces an answer)! Metacircular indeed.

26 Notably, the power of quote has made it so that we could write an interpreter without the need to parse textual
syntax: all we need to do is quote our datastructures! Indeed, most textbooks on programming language design
overly focus on the textual parsing of programming languages, giving the illusion that important parts of the
language structure are related to the surface syntax, but this is never essentially true. Every programming language
paradigm imaginable is representable in a simple symbolic expression representation such as is used by Scheme.
Code and data are not truly as far apart as they may appear.

Of course, if we wanted to make this into a useful programming language, we would want to be able to read programs
from source files on disk. read comes standard with Scheme (and really nearly any Lisp), so in general this work
has already been done for us. However, implementing read in Scheme is also easy, and can be done in about the
same amount of code as we implemented evaluate.

28

https://mitp-content-server.mit.edu/books/content/sectbyfn/books_pres_0/6515/sicp.zip/index.html

you have reached much more: you are no longer just a user of Scheme, but a builder of Scheme.
The power is yours!27

27 You have made it to not only the final section, but the final footnote! At this point we must assume that you have a
real passion for learning about these kinds of things, so we will provide you with even more resources:
• For more on how evaluators, like the one we have written above, work as well as its history, see William

Byrd's incredible talk: The Most Beautiful Program Ever Written.
• Structure and Interpretation of Computer Programs (also known as SICP or "the wizard book") contains

expanded versions of nearly everything we have covered here, as well as how to build an event loop,
simple constraint solvers, evaluators like this one, logic programming evaluators, and compilers to more
efficient machine code. There is no better way to understand the nature of computing than to study SICP. A
good way to learn it is to switch between reading the source text and watching the 1980s lectures. SICP is
available as a printed book, as an "info" manual conveniently readable in Emacs, or in HTML, but if you
are going to read SICP from a web browser we strongly recommend this version.

• The Little Schemer is a fun book written in a conversational style. It has many useful lessons in it and a
whimsical, puzzle-like quality to it, with delightful illustrations throughout. There are also many followup
books in the series which explore other computer science topics in depth.

• Software Design for Flexibility takes many of the ideas from SICP and builds on them further. In many ways it
can be thought of as SICP's true sequel.

• Not to mention that simply using Scheme or other Lisps are also a great way to learn about them. Contributing
to Spritely or Guix are two excellent ways to put these skills to use!

Enjoy the journey!

29

https://guix.gnu.org/
https://spritely.institute/
https://mitpress.mit.edu/books/software-design-flexibility
https://mitpress.mit.edu/books/little-schemer-fourth-edition
https://sarabander.github.io/sicp/html/
https://www.youtube.com/watch?v=-J_xL4IGhJA&list=PLE18841CABEA24090
https://mitp-content-server.mit.edu/books/content/sectbyfn/books_pres_0/6515/sicp.zip/full-text/book/book.html
https://www.youtube.com/watch?v=OyfBQmvr2Hc

	1. Introduction
	2. Setting up
	3. Hello Scheme!
	4. Basic types, a few small functions
	5. Variables and procedures
	6. Conditionals and predicates
	7. Lists and "cons"
	8. Closures
	9. Iteration and recursion
	10. Mutation, assignment, and other kinds of side effects
	11. On the extensibility of Scheme (and Lisps in general)
	12. Scheme in Scheme

