
The Heart of Spritely: Distributed Objects
and Capability Security

Christine Lemmer-Webber, Randy Farmer, Juliana
Sims

Table of Contents
1. Introduction
2. Capability security as ordinary programming
3. Spritely Goblins: Distributed, transactional object programming
4. OCapN: A Protocol for Secure, Distributed Systems
5. Application safety, library safety, and beyond
6. Portable encrypted storage
7. Conclusions
8. Appendix
9. License
NOTE: This is an early draft, still under technical review.

This paper is the second in a three-part series outlining Spritely's thinking and design. The first
paper, Spritely: New Foundations for Networked Communities, explains the problems which face
contemporary social network design. This paper details the core technical toolbox provided by
Spritely Goblins and how it supplies the necessary features to feasibly build out Spritely's broader
vision. The third paper in the series, Spritely for Secure Applications and Communities, ties the first
two papers together by showing how the architecture for user-facing software fulfills the vision of
the first paper and can be built on top of ideas from this paper.

Spritely's core tooling is generally useful and this paper may be independently of interest to people
with a wide variety of programming backgrounds. The architecture of this paper is also designed
with a purpose: to give us the firm footing to be able to achieve the ambitious journey of fulfilling
the Spritely's user-facing vision. If your goal is to understand Spritely's full vision, it is our
recommendation that you read each paper in order, however this is not a requirement.

This paper, like all of the Spritely Institute's work, is based on and is a contribution to open source
and open standards.

1. Introduction
Building peer-to-peer applications on contemporary programming architecture is a complicated
endeavor which requires careful planning, development, and maintenance. Building the kind of
fully-decentralized design for healthy social community networks that Spritely aspires for would be
too hard on systems that assume traditional client-server architecture and authority models. If each
of our needs runs contrary to the grain of expected paradigms, we will have a hard time achieving
our goals. Still, we must provide a development model which is comfortable in ways which match
programmer intuitions. Spritely's core layers of abstractions achieve each of these seemingly
contradictory requirements by drawing together decades of research from the object capability

1

spritely-for-users.org
spritely-framing.org

security and programming language design communities.

Spritely's core layers of abstraction make building secure peer-to-peer applications as natural as any
other programming model. Spritely provides an integrated system for distributed asynchronous
programming, transactional error handling, time-travel debugging, and safe serialization. All this
under a security model resembling ordinary reference passing, reducing most considerations to a
simple slogan: "If you don't have it, you can't use it."

2. Capability security as ordinary programming
The Principle of Least Authority (POLA) says that code should be granted only the
authority it needs to perform its task and no more. Code has a lot of power. Code can
read your files, encrypt your files, delete your files, send your files (and all of the
information within them) to someone else, record your keystrokes, use your laptop
camera, steal your identity, hold your computer for ransom, steal your cryptocurrency,
drain your bank account, and more. But most of the code that we write doesn't need to
do any of those things – so why do we give it the authority to do so?

POLA is ultimately about eliminating both ambient and excess authority. It's not a motto
that is meant to be inspirational; POLA can actually be achieved. But how?

– Kate Sills, POLA Would Have Prevented the Event-Stream Incident

The power of this model is best understood by contrast to Access Control Lists (ACL), the
prevailing authority model, common to (and popularized by) Unix and nearly everything which has
come before and followed since.

If Alisha is logged in to her computer and wants to play Solitaire, she can run it like so:

Applications run as Alisha!
Can do anything Alisha can do!
SHELL> solitaire

In an ACL permission system Solitaire, the most innocuous-seeming of programs, can wreak the
maximum amount of havoc possible to Alisha's computing life. Solitaire could snoop through
Alisha's love letters, upload her banking information to a shady website, and delete or cryptolock
her files (possibly demanding a tidy sum on behalf of some shady group somewhere to release
access).

What makes seemingly-innocent Solitaire so dangerous is the ambient authority of Access Control
List operating systems. In such a computing environment, when Alisha types "solitaire" in a
terminal window or double clicks on its icon, her computer runs Solitaire as Alisha. Solitaire can do
everything Alisha can do, including many dangerous things Alisha would not like.1

1 A malicious version of Solitaire is an example of the confused deputy problem. This is an issue which exists in
Access Control List security where one program or a user can trick a program or user with greater privileges into
doing something malicious. By delegating to or deputizing Solitaire with her privileges, Alisha opens the door to
Solitaire abusing them.

2

https://medium.com/agoric/pola-would-have-prevented-the-event-stream-incident-45653ecbda99

The contrast with an object capability environment is strong. Following the principle of least
authority, programs, objects, and procedures are defined in an environment with no dangerous
authority. In an object capability computing environment, Solitaire would only be able to run with
the authority it has been handed.

Imagine solitaire as being a procedure within an object capability secure language. (To make it
obvious that these ideas can extend to a variety of language environments,2 examples will use a
syntax which resembles something like Javascript or Python.) Solitaire, being run, cannot do
anything particularly dangerous… but it can't do anything particularly useful either.

Runs in an environment with no special authority...
not even the ability to display to the screen!
REPL> solitaire()

As-is, all solitaire can do is return a value… but Solitaire as a game requires interactivity: it should
display to the screen, and it should be able to read input through the keyboard and mouse.

Consider a capability which has been granted more power by the underlying system,
makeWinCanvas(windowTitle). Say that solitaire can take a first argument which takes

2 The requirements for a programming language to be considered object capability safe are reasonably minimal (no
ambient authority, no global mutable state, lexical scoping with reference passing being the primary mechanism for
capability transfer, and importing a library should not provide access to interesting authority). See A Security Kernel
Based on the Lambda Calculus for more information.

3

 Figure 2.1:

email browser history

financial documents
photo collection

keypresses score file
display camera

microphone

everything...

solitaire

 Figure 2.2:

solitaire

http://mumble.net/~jar/pubs/secureos/secureos.html
http://mumble.net/~jar/pubs/secureos/secureos.html

a window + canvas representing an object which is able to read keyboard and mouse input, but only
while the window is active. A user will be able to use the former to produce a value to pass to the
latter, with exactly that authority and no more:

Constructs a new window
REPL> solitaireWin = makeWinCanvas("Safe Solitaire")
Pass it to solitaire
REPL> solitaire(solitaireWin)

If you want to allow Solitaire to be able to access a high score file, you could imagine that the
solitaire procedure could accept a third procedure for exactly that purpose:

REPL> scoreFile = openFile("~/.solitaire-hs.txt", "rw")
REPL> solitaire(solitaireWin, scoreFile)

4

 Figure 2.3:

solitaire solitaireWin display

keyboard

Consider the power of this: solitaire now has access to display to the solitaireWin window, it
can read from the keyboard and mouse when the window is active, it can only write to the specific
file it has been given access to, but it cannot do anything else dangerous.3 It cannot access the
network. It cannot read or write files from the filesystem arbitrarily (it can only access the high
score file it was given). It cannot act as a keylogger (it can only read keyboard and mouse events
while the window is being actively used by the user).4

This object capability security model is built on completely ordinary reference passing, familiar to
the kind of programming developers do every day. What can and cannot be done is clear: if you
don't have it, you can't use it.

3. Spritely Goblins: Distributed, transactional object
programming

3.1. On language and syntax choice

3 Those experienced with Unix-like operating systems may be familiar with POSIX file handles. These are integer
references to (open) files created by the kernel unique to the process requesting them which can be passed between
processes and which give access to the underlying file. There is no need to search for the underlying file when given
a file handle; the handle has all the information needed to access it. These handles can be thought of as capabilities.

4 Creating all of these various capabilities by hand each time a program is launched would be extremely tedious.
Instead, in an object capability context, creating and handing off references would be handled automatically by
existing capabilities so that users would not have to think about it. In this example, the executing enviroment may
implicitly pass in scoreFile and solitaireWin to an invocation of solitaire().

5

 Figure 2.4:

scoreFile

filesystem

solitaire solitaireWin display

keyboard

https://en.wikipedia.org/wiki/File_descriptor

3.2. A taste of Goblins
3.2.1. A simple greeter
3.2.2. State as updating behavior
3.2.3. Objects which contain objects
3.2.4. Asynchronous message passing
3.2.5. Transactions make errors survivable
3.2.6. Promise pipelining
3.2.7. When schemes go awry: failure propagation through pipelines

3.3. Security as relationships between objects
3.3.1. Making and editing a blogpost
3.3.2. A blog to collect posts
3.3.3. Group-style editing
3.3.4. Revocation and accountability
3.3.5. Guest post with review
3.3.6. Lessons learned

3.4. Spritely Goblins as a society of networked objects
3.5. The vat model of computation
3.6. Turns are cheap transactions
3.7. Time-travel distributed debugging
3.8. Safe serialization and upgrade
3.9. Distributed behavior and why we need it

At the heart of Spritely is Goblins, its distributed object programming environment.5 Goblins
provides an intuitive security model, automatic local transactions for locally synchronous
operations, and easy to use and efficient asynchronous communication with encapsulated objects
which can live anywhere on the network. Its networking model abstracts away these details so the
programmer can focus on object programming rather than network protocol design. Goblins also
integrates powerful distributed debugging tools, and a process persistence and upgrade model which
respects its security fundamentals.6

Within Goblins, discussion of a distributed object is referring to a model where many independent
objects communicate with other objects on many different machines. In other words, distributed
object programming means "a distributed network of independent objects".7 Objects are built out of

5 In recent years there has been enormous pushback against the term "object", stemming mostly from functional
programming spaces and PTSD developed from navigating complicated Java-esque class hierarchies. However, the
term "object" means many different things; Jonathan Rees identified nine possible properties associated with
programming uses of the word "object". For Goblins, objects most importantly means addressable entities with
encapsulated behavior. Goblins supports distributed objects in that it does not particularly matter where an object
lives for asynchronous message passing; more on this and its relationship with actors later.

6 Goblins draws inspiration largely from two sources. The first is Scheme (on which its current implementations are
built), and particularly the "W7" Scheme variant found in A Security Kernel Based on the Lambda Calculus, and the
E programming language. (Both of these have rich histories of their own, particularly E's predecessor Joule, so of
course Goblins inherits those too.) W7's primary contribution is the observation that a purely lexically scoped
language, with Scheme in particular, is already an excellent candidate for an object capability security environment.
E's primary contribution is the distributed object approach that Goblins largely adopts, including the first version of
the CapTP protocol used by Goblins as the object communication layer abstraction of OCapN. Goblins can thus be
seen as a combination of Scheme/W7 and E, with Goblins' primary innovative contribution being its transactional
design.

7 This is not to be confused with "the abstract conceptual objects themselves are distributed/replicated across different
machines", addressed as the Unum Pattern in the Distributed behavior and why we need it section.

Similarly this does not mean distributed convergent machines (such as blockchains or quorums), where a single abstract
machine, with all of its contained objects, can be deterministically replicated by multiple independent machines on
the network. While such designs can be composable with Spritely Goblins (or even easily built on top of its
transactional architecture), they are not the essential infrastructure to achieve Spritely's goals. Further discussion of
convergent machines is reserved for a future paper.

6

http://erights.org/history/joule/
http://www.erights.org/
http://mumble.net/~jar/pubs/secureos/secureos.html
http://www.mumble.net/~jar/articles/oo.html

encapsulated behavior: an object is encapsulated in the sense that its inner workings are opaque to
other objects, and (contrary to the focus of many systems today) objects are behavior-oriented
rather than data-oriented. Goblins enables intentional collaboration between objects even though
the network is assumed hostile as a whole.

Goblins utilizes techniques common to functional programming environments which enable cheap
transactionality (and by extension, time travel). The otherwise tedious plumbing associated with
these kinds of techniques is abstracted away so the developer can focus on object behavior and
interactions.

3.1. On language and syntax choice

The following examples will illustrate Goblins using its implementation in Guile (which is a dialect
of Scheme, which is itself a dialect of Lisp).8 While the ideas here could be ported across many
kinds of programming languages, Scheme's minimalism and flexibility allow for cleanly expressing
the core ideas of Goblins.

Prior knowledge of Scheme is not necessary, but some familiarity with programming in general is
expected. See A Scheme Primer if you'd like an introduction to Scheme.

This document uses an unusual representation of Lisp syntax which is whitespace-based instead of
parenthetical, named Wisp.9 Experience has shown that while parenthetical representations of Lisp
tend to feel alien to newcomers with prior programming experience, Wisp tends to look fairly
pleasantly like pseudocode. These examples aim to be as simple as possible to understand just by
reading them. If you'd like a more thorough explanation of how Lisp and Wisp relate, see
Appendix: Lisp and Wisp.

Lisp and Scheme programming (not only, but especially) tends to involve a cycle between
experimenting at the interactive REPL and code you keep around in a file. This paper follows the
same convention. Code examples that have lines preceding with REPL> are meant to demonstrate
examples of interactive use. Lines which follow and are preceded by underscores represent
continued entries for the same expression:

REPL> (define name "Doris")
REPL> (string-append "Hello " name "!")
; => "Hello Doris!"
REPL> (display "Hello screen output!\n")
; prints: Hello screen output!

REPL> define name "Doris"
REPL> string-append "Hello " name "!"
; => "Hello Doris!"
REPL> display "Hello screen output!\n"
; prints: Hello screen output!

To get your REPL set up properly for live programming, you will need to setup Guile, Goblins, and

8 At present, Goblins has two implementations, one on Racket (the initial implementation), and one on Guile (which
is newer). While both will be maintained and interoperable with each other in terms of distributed communication,
the Guile implementation is becoming the "main" implementation on top of which the rest of Spritely is being built.
Goblins' ideas are fairly general though and Goblins is implemented simply as a library on top of a host
programming language, and Goblins' key ideas could be ported to any language with sensible lexical scoping (but it
might not look as nice or be as pleasant to use or elegant).

9 Wisp's rules are defined in SRFI 119. Wisp's key feature is that it has all the same structural properties as a
parenthetical representation and can be translated back and forth between the parenthetical form and the whitespace-
based form bidirectionally with few key rules.

7

https://srfi.schemers.org/srfi-119/srfi-119.html
https://spritely.institute/static/papers/scheme-primer.html
https://www.gnu.org/software/guile/
https://racket-lang.org/

Wisp.

3.2. A taste of Goblins

The following section gives a high-level demonstration of Goblins through practical use.

If you do choose to follow along by entering the code from this section, you can define this as a
full-fledged module, say perhaps taste-of-goblins.w, like so:

(define-module (taste-of-goblins)
 #:use-module (goblins)
 #:use-module (goblins actor-lib methods)
 #:export (^cell ^greeter ^cgreeter ^borked-cgreeter
 ^car-factory ^borked-car-factory))

define-module : taste-of-goblins
 . #:use-module : goblins
 . #:use-module : goblins actor-lib methods
 . #:export (^cell ^greeter ^cgreeter ^borked-cgreeter
 ^car-factory ^borked-car-factory)

Code examples that are not interactive can/should be entered into this file.

Now you're ready to go. Read on!

3.2.1. A simple greeter

This is an extremely brief taste of what programming in Goblins is like. The following code is
adapted from the Guile version of Goblins.9

To work with Goblins objects, a vat is required. Vats will be explained more later, but for now, think
of a vat as a context for Goblins objects. Here's how to make and enter one interactively:

;; define with next argument *not* in parentheses
;; defines an ordinary variable
REPL> (define a-vat (spawn-vat))
REPL> ,enter-vat a-vat
REPL [1]>

;; define with next argument *not* in parentheses
;; defines an ordinary variable
REPL> define a-vat
_____ spawn-vat
REPL> ,enter-vat a-vat
REPL [1]>

Entering a vat introduces a new layer of abstraction to the REPL and creates a sub-REPL, indicated
by [1]. Errors may result in the user entering a new debugger sub-REPL, also indicated by [1].
The number in brackets is incremented for each new sub-REPL. Any code examples in this
document which use [1] should be run inside a vat - that is, after an ,enter-vat command like
the one above - even if this command is not written out. You can exit a vat (or any sub-REPL) with
,q:

REPL [1]> ,q
REPL>

8

REPL [1]> ,q
REPL>

Note that this only works in an interactive context at a REPL. For how to work with vats statically -
inside a file - see Appendix: Using vats in files.

Now, implement a friend who will greet you:

;; define with next argument wrapped in parentheses
;; defines a named function
(define (^greeter bcom our-name) ; constructor (outer procedure)
 (lambda (your-name) ; behavior (inner procedure)
 (format #f "Hello ~a, my name is ~a!" ; returned implicitly
 your-name our-name)))

;; define with next argument wrapped in parentheses
;; defines a named function
define (^greeter bcom our-name) ; constructor (outer procedure)
 lambda (your-name) ; behavior (inner procedure)
 format #f "Hello ~a, my name is ~a!" ; returned implicitly
 . your-name our-name

The outer procedure, defined by define, is named ^greeter, which is its constructor.10 The
inner procedure, defined by the lambda (an "anonymous function"), is its behavior procedure,
which implicitly returns a formatted string. Both of these are most easily understood by usage, so
try instantiating one:11

;; define with next argument *not* in parentheses
;; defines an ordinary variable
REPL [1]> (define gary (spawn ^greeter "Gary"))

;; define with next argument *not* in parentheses
;; defines an ordinary variable
REPL [1]> define gary
_________ spawn ^greeter "Gary"

10 The ^ character is conventionally prefixed on Goblins constructors and is called a hard hat, referring to the kind
used by construction workers.

11 Any code line preceded by REPL> represents the prompt for interactively entered code at a developer's REPL (Read
Eval Print Loop). Lines following represent expected returned values or behavior, and those prefixed with =>
represent an expected return value.

9

 Figure 3.2.1:

user gary

As you can see, spawn's first argument is the constructor for the Goblins object which will be
spawned. For now, ignore the bcom, which is not used in this first example. The rest of the
arguments to spawn are passed in as the rest of the arguments to the constructor.12 So in this case,
"Gary" is passed as the value of our-name.

The constructor returns the procedure representing its current behavior. In this case, that behavior is
a simple anonymous lambda. You can now invoke your gary friend using the synchronous call-
return $ operator (not to be confused for a Unix command prompt):

REPL [1]> ($ gary "Alice")
;; => "Hello Alice, my name is Gary!"

REPL [1]> $ gary "Alice"
;; => "Hello Alice, my name is Gary!"

As you can see, "Alice" is passed as the value for your-name to the inner lambda behavior-
procedure. Since our-name was already bound through the outer constructor procedure, the inner
behavior is able to pass both of these names to format to give a friendly greeting.

3.2.2. State as updating behavior

Here is a simple cell which stores a value. This cell will have two methods: 'get retrieves the
current value, and 'set replaces the current value with a new value.

(define (^cell bcom val)
 (methods ; syntax for first-argument-symbol-based dispatch
 ((get) ; takes no arguments
 val) ; returns current value
 ((set new-val) ; takes one argument, new-val
 (bcom (^cell bcom new-val))))) ; become a cell with the new value

define (^cell bcom val)
 methods ; syntax for first-argument-symbol-based dispatch
 (get) ; takes no arguments
 . val ; returns current value
 (set new-val) ; takes one argument, new-val

12 spawn invokes a constructor for an object and returns a reference to that object, which may lead one to think of it in
terms of new or make from object-oriented languages. However, unlike those keywords, spawn does not exist
primarily to indicate new heap values; rather, it wraps the construction of an object in an object capability secure
manner. spawn creates and manages the bcom capability (unique to each object), as well as places the object into
the actor map of the vat where it is created. These topics will be discussed more later.

10

 Figure 3.2.2:

user gary

"Hello Alice,
my name is

Gary!"

"Alice"

 bcom : ^cell bcom new-val ; become a cell with the new value

Try it. Cells hold values, and so do treasure chests, so make a treasure chest flavored cell. Taking
things out and putting them back in is easy.

REPL [1]> (define chest (spawn ^cell "sword"))
REPL [1]> ($ chest 'get)
;; => "sword"
REPL [1]> ($ chest 'set "gold")
REPL [1]> ($ chest 'get)
;; => "gold"

REPL [1]> define chest
_________ spawn ^cell "sword"
REPL [1]> $ chest 'get
;; => "sword"
REPL [1]> $ chest 'set "gold"
REPL [1]> $ chest 'get
;; => "gold"

Now you can see what bcom is: a capability specific to this object instance which allows it to
change its behavior! (For this reason, bcom is pronounced "become"!)13

13 Objects in Goblins derive their functionality from "behaviors", which are simply procedures. bcom allows an object
to specify what functionality it would like to have - what behavior it would like to become - the next time it is

11

 Figure 3.2.3:

user
chest
"sword"

1.

user 'get

"sword"

chest
"sword"

2.

user 'set "gold"
chest

"gold"

3.

user 'get

"gold"

chest
"gold"

4.

methods was also new to this version. It turns out that methods is simply syntax sugar. There is
nothing special about methods; you could easily write your own version or use it outside of
Goblins objects to build general symbol-based-method-dispatch.14

3.2.3. Objects which contain objects

Objects can also contain and define other object references, including in their outer constructor
procedure.

Here is the definition of a "counting greeter" called ^cgreeter:

(define (^cgreeter bcom our-name)
 (define times-called ; keeps track of how many times 'greet is called
 (spawn ^cell 0)) ; starts count at 0
 (methods
 ((get-times-called)
 ($ times-called 'get))
 ((greet your-name)
 (define current-times-called
 ($ times-called 'get))
 ;; increase the number of times called
 ($ times-called 'set
 (+ 1 current-times-called))
 (format #f "[~a] Hello ~a, my name is ~a!"
 ($ times-called 'get)
 your-name our-name))))

define (^cgreeter bcom our-name)
 define times-called ; keeps track of how many times 'greet is called
 spawn ^cell 0 ; starts count at 0
 methods
 (get-times-called)
 $ times-called 'get
 (greet your-name)
 define current-times-called
 $ times-called 'get
 ;; increase the number of times called
 $ times-called 'set
 + 1 current-times-called
 format #f "[~a] Hello ~a, my name is ~a!"
 $ times-called 'get
 . your-name our-name

As you can see near the top, times-called is instantiated as an ^cell like the one defined
earlier. The current value of this cell is returned by get-times-called and is updated every
time the greet method is called:

REPL [1]> (define julius (spawn ^cgreeter "Julius"))
REPL [1]> ($ julius 'get-times-called)
;; => 0
REPL [1]> ($ julius 'greet "Gaius")

invoked. Together, these features allow Goblins to be quasi-functional, and enable transactionality and time travel
capabilities.

14 methods is a macro which returns a procedure which supports symbol dispatch on its first argument. Macros are
one of the key features of Scheme that make it such a powerful and expressive language. You can read more about
them in the Scheme Primer section "On the extensibility of Scheme (and Lisps in general)", which even includes an
implementation of methods itself!

12

https://spritely.institute/static/papers/scheme-primer.html#scheme-extensibility

;; => "[1] Hello Gaius, my name is Julius!"
REPL [1]> ($ julius 'greet "Brutus")
;; => "[2] Hello Brutus, my name is Julius!"
REPL [1]> ($ julius 'get-times-called)
;; => 2

REPL [1]> define julius
_________ spawn ^cgreeter "Julius"
REPL [1]> $ julius 'get-times-called
;; => 0
REPL [1]> $ julius 'greet "Gaius"
;; => "[1] Hello Gaius, my name is Julius!"
REPL [1]> $ julius 'greet "Brutus"
;; => "[2] Hello Brutus, my name is Julius!"
REPL [1]> $ julius 'get-times-called
;; => 2

13

3.2.4. Asynchronous message passing

You have seen that the behavior of objects may be invoked synchronously with $. However, this
only works if two objects are both defined on the same machine on the network and the same event
loop within that machine. Since Goblins is designed to allow for object invocation across a
distributed network, how is that done?

You can simulate a distributed context by creating and entering a new vat:

REPL [1]> ,q
REPL> (define b-vat (spawn-vat))
REPL> ,enter-vat b-vat

14

 Figure 3.2.4:

user times-
called

0

julius1.

user times-
called

julius

'get-times-called

02.

user times-
called

julius

'greet "Gaius"

"[1] Hello Gaius,
my name is

Julius!"

3.

user times-
called

julius

'greet "Brutus"

"[2] Hello Brutus,
my name is

Julius!"

4.

user times-
called

julius

'get-times-called

25.

REPL [1]> ,q
REPL> define b-vat
_____ spawn-vat
REPL> ,enter-vat b-vat

This is where <- comes in. In contrast to $, <- can be used against objects which live anywhere,
even on remote machines. However, unlike invocation with $, you do not get back an immediate
result; you get a promise:

REPL [1]> (<- julius 'greet "Lear")
;; => #<local-promise>

REPL [1]> <- julius 'greet "Lear"
;; => #<local-promise>

This promise must be listened to. The procedure to listen to promises in Goblins is called on:

REPL [1]> (on (<- julius 'greet "Lear")
 (lambda (got-back)
 (format #t "Heard back: ~a\n" got-back)))
; prints (eventually):
; Heard back: [4] Hello Lear, my name is Julius!

REPL [1]> on (<- julius 'greet "Lear")
_________ lambda (got-back)
_________ format #t "Heard back: ~a\n"
_________ . got-back
; prints (eventually):
; Heard back: [4] Hello Lear, my name is Julius!

15

Not all communication goes as planned, especially in a distributed system. on also supports the
keyword arguments of #:catch and #:finally, which both accept a procedure defining
handling errors in the former case and code which will run regardless of successful resolution or
failure in the latter case:

REPL> (define (^broken-bob bcom)
 (lambda ()
 (error "Yikes, I broke!")))
REPL> ,enter-vat a-vat
REPL [1]> (define broken-bob (spawn ^broken-bob))
REPL [1]> ,q
REPL> ,enter-vat b-vat
REPL [1]> (on (<- broken-bob)
 (lambda (what-did-bob-say)

16

 Figure 3.2.5:

user julius

b-vat a-vat

user julius

b-vat a-vat

'greet "Lear"

user julius

b-vat a-vat

#<promise>

"[1] Hello Lear,
my name is

Julius!"

#<promise>

1.

2.

3.

 (format #t "Bob says: ~a\n" what-did-bob-say))
 #:catch (lambda (err)
 (format #t "Got an error: ~a\n" err))
 #:finally (lambda ()
 (display "Whew, it's over!\n")))
; prints (eventually):
; Got an error: <error ...>
; Whew, it's over!

REPL> define (^broken-bob bcom)
_____ lambda ()
_____ error "Yikes, I broke!"
REPL> ,enter-vat a-vat
REPL [1]> define broken-bob
_________ spawn ^broken-bob
REPL [1]> ,q
REPL> ,enter-vat b-vat
REPL [1]> on (<- broken-bob)
_________ lambda (what-did-bob-say)
_________ format #t "Bob says: ~a\n" what-did-bob-say
_________ . #:catch
_________ lambda (err)
_________ format #t "Got an error: ~a\n" err
_________ . #:finally
_________ lambda ()
_________ display "Whew, it's over!\n"
; prints (eventually):
; Got an error: <error ...>
; Whew, it's over!

3.2.5. Transactions make errors survivable

Mistakes happen, and when they do, the damage should be minimal. But with many moving parts,
accomplishing this can be difficult.

However, Goblins makes life easier. To see how, intentionally insert a couple of print debugging
lines (with pk, which is pronounced and means "peek") and then an error:

(define (^borked-cgreeter bcom our-name)
 (define times-called (spawn ^cell 0))
 (methods
 ((get-times-called)
 ($ times-called 'get))
 ((greet your-name)
 (pk 'before-incr ($ times-called 'get))
 ;; increase the number of times called
 ($ times-called 'set
 (+ 1 ($ times-called 'get)))
 (pk 'after-incr ($ times-called 'get))
 (error "Yikes")
 (format #f "[~a] Hello ~a, my name is ~a!"
 ($ times-called 'get)
 your-name our-name))))

define (^borked-cgreeter bcom our-name)
 define times-called
 spawn ^cell 0

17

 methods
 (get-times-called)
 $ times-called 'get
 (greet your-name)
 pk 'before-incr : $ times-called 'get
 ;; increase the number of times called
 $ times-called 'set
 + 1 ($ times-called 'get)
 pk 'after-incr : $ times-called 'get
 error "Yikes"
 format #f "[~a] Hello ~a, my name is ~a!"
 $ times-called 'get
 . your-name our-name

Now spawn this friend and invoke it:

REPL> ,enter-vat a-vat
REPL [1]> (define horatio
 (spawn ^borked-cgreeter "Horatio"))
REPL [1]> ($ horatio 'get-times-called)
;; => 0
REPL [1]> ($ horatio 'greet "Hamlet")
;; pk debug: (before-incr 0)
;; pk debug: (after-incr 1)
;; ice-9/boot-9.scm:1685:16: In procedure raise-exception:
;; Yikes
;; Entering a new prompt. Type `,bt' for a backtrace or `,q' to continue.

REPL> ,enter-vat a-vat
REPL [1]> define horatio
_____ spawn ^borked-cgreeter "Horatio"
REPL [1]> $ horatio 'get-times-called
;; => 0
REPL [1]> $ horatio 'greet "Hamlet"
;; pk debug: (before-incr 0)
;; pk debug: (after-incr 1)
;; ice-9/boot-9.scm:1685:16: In procedure raise-exception:
;; Yikes
;; Entering a new prompt. Type `,bt' for a backtrace or `,q' to continue.

Whoops! Looks like something went wrong! You can see from the pk debugging that the times-
called cell should be incremented to 1. And yet…

REPL [1]> ($ horatio 'get-times-called)
;; => 0

REPL [1]> $ horatio 'get-times-called
;; => 0

This is covered in greater detail later, but the core idea here is that synchronous operations run with
$ are all done together as one transaction. If an unhandled error occurs, any state changes resulting
from synchronous operations within that transaction will simply not be committed. This is useful,
because it means most otherwise difficult cleanup steps are handled automatically.

This also sits at the foundation of Spritely Goblins' time travel debugging features. All of this will
be discussed in greater detail in sections later in this document: The vat model of computation,
Turns are cheap transactions, and Time-travel distributed debugging.

18

3.2.6. Promise pipelining

"Machines grow faster and memories grow larger. But the speed of light is constant and
New York is not getting any closer to Tokyo."

— Mark S. Miller, Robust Composition: Towards a Unified Approach to Access Control
and Concurrency Control

Promise pipelining15 provides two different features at once:

• A convenient developer interface for describing a series of asynchronous actions, allowing
for invoking the objects which promises will point to before they are even resolved
(sometimes before the objects even exist!)

• A network abstraction that eliminates many round trips16

Consider the following car factory, which makes cars carrying the company name of the factory:

;; Create a "car factory", which makes cars branded with
;; company-name.
(define (^car-factory bcom company-name)
 ;; The constructor for cars to create.
 (define (^car bcom model color)
 (methods ; methods for the ^car
 ((drive) ; drive the car
 (format #f "*Vroom vroom!* You drive your ~a ~a ~a!"
 color company-name model))))
 ;; methods for the ^car-factory instance
 (methods ; methods for the ^car-factory
 ((make-car model color) ; create a car
 (spawn ^car model color))))

;; Create a "car factory", which makes cars branded with
;; company-name.
define (^car-factory bcom company-name)

15 Like so many examples in this document, the designs of promise pipelining and the explanation of its value come
from the E programming language, the many contributors to its design, and Mark S. Miller's extraordinary work
documenting that work and its history. If you find this section interesting, both the Promise Pipelining page from
erights.org and sections 2.5 and 16.2 of Mark Miller's dissertation.

Note that if you are familiar with promises in Javascript, those are also inspired by E (and its predecessor Joule)'s
promises. However, the full version of promises, including promise pipelining (or its most powerful use combined
with network programming) were never included in Javascript proper. E's full vision of promises are present in
Spritely Goblins, as outlined here.

16 Promises without promise pipelining are already an improvement over raw callbacks but are still insufficiently
ergonomic for convenient programming. "Callback hell" and the annoyance of ".then() chaining" have lead
many developers to prefer coroutines via async and await type operators. Goblins does have support for
coroutines, but their use is somewhat cautioned against, and they are not prioritized. Coroutines give the illusion of
straightahead call-return style programming by flattening callback structures. Unfortunately, while call-return
programming is synchronous, coroutines are really "splitchronous"… each invocation of await splits time. await
makes it very easy to accidentally mistake splitchronous code as being synchronous code, but the difference is
severe: the world can change around the user during the time between a coroutine's suspension and resumption,
opening up a class of vulnerabilities known as "re-entrancy attacks". This risk was observed during E's development
and lead E to not include coroutines at all. A couple of decades later, re-entrancy attacks became the number one
way money has been stolen in Ethereum due to bugs in smart contracts.

But there is another reason to prefer promise pipelining over coroutines: the reduction of round-trips! A coroutine
requires waiting for a response to come back before deciding upon the next action, which is not a requirement for a
promise pipelining based system.

19

https://hackernoon.com/hack-solidity-reentrancy-attack
https://web.archive.org/web/20050223050622/http://www.eros-os.org/pipermail/e-lang/2001-July/005418.html
http://www.erights.org/talks/thesis/markm-thesis.pdf
http://erights.org/
http://www.erights.org/elib/distrib/pipeline.html
http://www.erights.org/talks/thesis/
http://www.erights.org/talks/thesis/

 ;; The constructor for cars to create.
 define (^car bcom model color)
 methods ; methods for the ^car
 (drive) ; drive the car
 format #f "*Vroom vroom!* You drive your ~a ~a ~a!"
 . color company-name model
 ;; methods for the ^car-factory instance
 methods ; methods for the ^car-factory
 (make-car model color) ; create a car
 spawn ^car model color

Here is an instance of this car factor called fork-motors. If you type this in, you'll see an error:

;; Interaction on machine A
REPL> ,enter-vat a-vat
REPL [1]> (define fork-motors (spawn ^car-factory "Fork"))

;; Interaction on machine A
REPL> ,enter-vat a-vat
REPL [1]> define fork-motors
_________ spawn ^car-factory "Fork"

Since asynchronous message passing with <- works across machines, it does not matter whether
interactions with fork-motors are local or via objects communicating over the network. Treat
fork-motors as living on a remote machine A, and so the following interactions will happen
with invocations originating from the local machine B.

Send a message to fork-motors invoking the 'make-car method, receiving back a promise
for the car which will be made, which we shall name car-vow (-vow being the conventional
suffix given for promises in Goblins):

;; Interaction on machine B, communicating with fork-motors on A
REPL> ,enter-vat b-vat

20

REPL [1]> (define car-vow (<- fork-motors 'make-car "Explorist" "blue"))

;; Interaction on machine B, communicating with fork-motors on A
REPL> ,enter-vat b-vat
REPL [1]> define car-vow
_________ <- fork-motors 'make-car "Explorist" "blue"

So you have a promise to a future car reference, but not the reference itself. You would like to drive
the car as soon as it rolls off the lot of the factory, which of course involves sending a message to
the car.

Without promise pipelining, making use of the tools already shown (and following the pattern most
other distributed programming systems use), you would end up with something like:

;; Interaction on machine B, communicating with A
REPL [1]> (on car-vow ; B->A: first resolve the car-vow
 (lambda (our-car) ; A->B: car-vow resolved as our-car
 (on (<- our-car 'drive) ; B->A: now you can message our-car
 (lambda (val) ; A->B: result of that message
 (format #t "Heard: ~a\n" val)))))
; prints (eventually):
; Heard: *Vroom vroom!* You drive your blue Fork Explorist!

21

 Figure 3.2.6:

user fork-motors

b-vat a-vat

user fork-motors

b-vat a-vat

'make-car
"Explorist"

"blue"

car-vow

1.

2.

;; Interaction on machine B, communicating with A
REPL [1]> on car-vow ; B->A: first resolve the car-vow
_________ lambda (our-car) ; A->B: car-vow resolved as our-car
_________ on (<- our-car 'drive) ; B->A: now you can message our-car
_________ lambda (val) ; A->B: result of that message
_________ format #t "Heard: ~a\n" val
; prints (eventually):
; Heard: *Vroom vroom!* You drive your blue Fork Explorist!

With promise pipelining, you can simply message the promise of the car directly. The first benefit
can be observed from code compactness, in that you do not need to do an on of car-vow to later
message our-car, you can simply message car-vow directly:

;; Interaction on machine B, communicating with A
REPL [1]> (on (<- car-vow 'drive) ; B->A: send message to future car
 (lambda (val) ; A->B: result of that message

22

 Figure 3.2.7:

user fork-motors

b-vat a-vat

car-vow our-car

user fork-motors

b-vat a-vat

our-car

"*Vroom vroom!*
You drive your

blue Fork
Explorist!'drive

3.

4.

 (format #t "Heard: ~a\n" val)))
; prints (eventually):
; Heard: *Vroom vroom!* You drive your blue Fork Explorist!

;; Interaction on machine B, communicating with A
REPL [1]> on (<- car-vow 'drive) ; B->A: send message to future car
_________ lambda (val) ; A->B: result of that message
_________ format #t "Heard: ~a\n" val
; prints (eventually):
; Heard: *Vroom vroom!* You drive your blue Fork Explorist!

While clearly a considerable programming convenience, the other advantage of promise pipelining
is a reduction of round-trips, whether between event-loop vats or across machines on the network.

This can be understood by looking at the comments to the right of the two above code interactions.
The message flow in the first case looks like:

B => A => B => A => B

The message flow in the second case looks like:

B => A => B

In other words, machine B can say to machine A: "Make me a car, and as soon as that car is ready, I
want to drive it!"

With this in mind, the promise behind Mark Miller's quote at the beginning of this section is clear. If
two objects are on opposite ends of the planet, round trips are unavoidably expensive. Promise
pipelining both allows us to make plans as programmers and allows for Goblins to optimize
carrying out those steps as bulk operations over the network.

3.2.7. When schemes go awry: failure propagation through pipelines
Thy wee bit heap o' leaves an' stibble, Has cost thee mony a weary nibble! Now
thou's turn'd out, for a' thy trouble, But house or hald, To thole the winter's
sleety dribble, An' cranreuch cauld!

23

 Figure 3.2.8:

user fork-motors

b-vat a-vat

car-vow

"*Vroom vroom!*
You drive your

blue Fork
Explorist!

'drive

3.

 But, Mousie, thou art no thy-lane, In proving foresight may be vain; The best-
laid schemes o' mice an' men Gang aft agley, An' lea'e us nought but grief an'
pain, For promis'd joy!

 Still thou art blest, compar'd wi' me The present only toucheth thee: But, Och!
I backward cast my e'e. On prospects drear! An' forward, tho' I canna see, I
guess an' fear!

 — From "To a Mouse, on Turning Her Up in Her Nest With the Plough" by Robert
Burns, 1785

Unexpected behavior can cause a cascade of failures. In a synchronous call-return system with
exceptions, raising an exception causes not only the current procedure invocation to fail, but further
invocations up the chain until the exception is caught (and if uncaught, possibly by allowing the
program as a whole to fail). While potentially frustrating to encounter as a programmer or user, the
alternative of proceeding without mitigating unhandled behavior could be equally disastrous. Still,
if you interpret each procedure as voluntarily "sending a message to its caller" that something has
gone awry, you can see the great service that each callee performs for its caller (such a pattern is
common when a language does not provide implicit exception support), allowing the caller to make
new plans, or at least not move forward under assumptions that no longer hold. Even unhandled
exceptions, observed by the programmer, can be an opportunity to study and make new plans so
that things may work better next time.

In a highly asynchronous networked environment, the likelihood of unanticipated failures grows
substantially. Even with the most well implemented, bug-free locally implemented code (itself
usually less likely a possibility than its authors may think), network connections are fickle, and
remote objects may misbehave. As such, if a promise is broken, a pipelined message to that promise
will have nowhere to go. This too should be interpreted as a failure and handled correctly.

As an example of this, consider this broken implementation of a car factory:

(define (^borked-car-factory bcom company-name)
 (define (^car bcom model color)
 (methods ; methods for the ^car
 ((drive) ; drive the car
 (format #f "*Vroom vroom!* You drive your ~a ~a ~a!"
 color company-name model))))
 ;; methods for the ^car-factory instance
 (methods ; methods for the ^car-factory
 ((make-car model color) ; create a car
 (error "Your car exploded on the factory floor! Ooops!")
 (spawn ^car model color))))

define (^borked-car-factory bcom company-name)
 define (^car bcom model color)
 methods ; methods for the ^car
 (drive) ; drive the car
 format #f "*Vroom vroom!* You drive your ~a ~a ~a!"
 . color company-name model
 ;; methods for the ^car-factory instance
 methods ; methods for the ^car-factory
 (make-car model color) ; create a car
 error "Your car exploded on the factory floor! Ooops!"
 spawn ^car model color

What would happen if you tried making a car using this factory and then pipeline a message to drive
it?

24

REPL [1]> (define forked-motors (spawn ^borked-car-factory "Forked"))
REPL [1]> (define car-vow (<- forked-motors 'make-car "Exploder" "red"))
REPL [1]> (define drive-noise-vow (<- car-vow 'drive))
REPL [1]> (on drive-noise-vow
 (lambda (val)
 (format #t "Heard: ~a\n" val))
 #:catch (lambda (err)
 (format #t "Caught: ~a\n" err)))
; prints (eventually):
; Caught: <error...>

REPL [1]> define forked-motors
_________ spawn ^borked-car-factory "Forked"
REPL [1]> define car-vow
_________ <- forked-motors 'make-car "Exploder" "red"
REPL [1]> define drive-noise-vow
_________ <- car-vow 'drive
REPL [1]> on drive-noise-vow
_________ lambda (val)
_________ format #t "Heard: ~a\n" val
_________ . #:catch
_________ lambda (err)
_________ format #t "Caught: ~a\n" err
; prints (eventually):
; Caught: <error...>

Even though it is car-vow which is initially broken, its exception propagates to drive-noise-
vow. Since there would be no useful way to drive a broken promise of a car anyhow, this is the
correct design, and the situation can be detected and dealt with.

3.3. Security as relationships between objects

Cooperation between independent agents depends upon establishing a degree of
security. Each of the cooperating agents needs assurance that the cooperation will not
endanger resources of value to that agent. In a computer system, a computational
mechanism can assure safe cooperation among the system's users by mediating resource
access according to desired security policy. Such a mechanism, which is called a
security kernel, lies at the heart of many operating systems and programming
environments.

– Jonathan A. Rees, A Security Kernel Based on the Lambda Calculus

Capability security as ordinary programming demonstrated how a programming language which
uses lexical scoping and is strict about removing ambient authority is already likely an excellent
foundation for a capability secure architecture. A taste of Goblins showed Goblins' powerful
transactional distributed object programming system. This section shows the union of the two: that
the relationships between Goblins objects is a powerful, expressive, and robust security model for
networked programs.

What follows is a common tutorial to make this clear: a blogging style system17 (in this case, used

17 This is not meant to be a "production-ready system", but an illustrative one. As one example limitation, the blog is
runtime-only and does not persist between processes to disk. However, the general ideas described are the
foundation from which a more serious system could be built, and even persistence could be accomplished through
the mechanisms described in Safe serialization and upgrade.

25

http://mumble.net/~jar/pubs/secureos/secureos.html

by a community newspaper of an imagined town) with different users cooperating and performing
different roles. Unlike most such tutorials, this is accomplished without an access control list:
resources are protected from misuse without relying on checking the identity of the performing
agent. Despite this, it will manage to introduce accountability and revocation features, the
protection of misuse from unauthorized parties, and even the demonstration of a multiple-
stakeholder cooperation pattern which has no direct parallel in an access control system.

3.3.1. Making and editing a blogpost

Lauren Ipsdale has decided to run a newspaper for her local community. The first thing Lauren will
need is a way to construct individual posts which can be widely read, but edited only by trusted
editors.

Lauren creates a new post:

REPL [1]> (define-values (day-in-park-post day-in-park-editor)
 (spawn-post-and-editor
 #:title "A Day in the Park"
 #:author "Lauren Ipsdale"
 #:body "It was a good day to take a walk..."))

REPL [1]> define-values (day-in-park-post day-in-park-editor)
_________ spawn-post-and-editor

26

_________ . #:title "A Day in the Park"
_________ . #:author "Lauren Ipsdale"
_________ . #:body "It was a good day to take a walk..."

(Implementation details of these blogposts will follow, but first this tutorial will focus on narrative
and use.)

spawn-post-and-editor returned two capabilities:

• day-in-park-post, which grants the authority to read Lauren's blogpost, but not to
make changes to it.

• day-in-park-editor, which grants the authority to modify the blogpost.

Lauren wants the feedback of her friend Robert, but wants to decide whether or not to make or
accept any changes herself. She shares day-in-park-post with Robert. Robert is able to view
the post by running:

27

REPL [1]> (display-post day-in-park-post)

REPL [1]> display-post day-in-park-post

Which prints out:

A Day in the Park
=================
 By: Lauren Ipsdale

It was a good day to take a walk...

Robert tells Lauren that he likes the blogpost, but that "a fine day" might sound more pleasant than

28

 Figure 3.3.1:

Lauren

vat a
machine a

post

Robert

vat b
machine b

Lauren

vat a
machine a

post

Robert

vat b
machine b

Lauren

vat a
machine a

post

Robert

vat b
machine b

1.

2.

3.

"a good day" for the article's opening, and that maybe the name of the post should be "A Morning in
the Park". Robert, not having access to day-in-park-editor, cannot make the changes
himself.

Lauren deliberates on this feedback and decides that she agrees with the suggestion to change
"good" to "fine" but that she thinks her title is good as-is. Lauren makes the change:

REPL [1]> ($ day-in-park-editor 'update
 #:body "It was a fine day to take a walk...")

REPL [1]> $ day-in-park-editor 'update
_____ . #:body "It was a fine day to take a walk..."

1. Implementation

Since the "blog rendering" code is not essential to the demonstration of these security
properties, that code is not shown in this section. However, it is available in Appendix:
Utilities for rendering blog examples

The final header for this module will look like so:

(define-module (goblins-blog)
 #:use-module (goblins)
 #:use-module (goblins actor-lib methods)
 #:use-module (goblins utils simple-sealers)
 #:use-module (goblins actor-lib cell)
 #:use-module (ice-9 match)
 #:use-module (srfi srfi-9)
 #:use-module (srfi srfi-9 gnu)
 #:export (spawn-post-and-editor
 spawn-blog-and-admin
 spawn-blog-and-admin spawn-adminable-post-and-editor
 ^logger spawn-logged-revocable-proxy-pair
 spawn-post-guest-editor-and-reviewer
 display-post-content display-blog-header
 display-post display-blog))

define-module : goblins-blog
 . #:use-module : goblins
 . #:use-module : goblins actor-lib methods
 . #:use-module : ice-9 match
 . #:use-module : srfi srfi-9
 . #:use-module : srfi srfi-9 gnu
 . #:use-module : simple-sealers
 . #:use-module : method-cell
 . #:export (spawn-post-and-editor spawn-blog-and-admin
 new-spawn-blog-and-admin spawn-adminable-post-and-editor
 ^logger spawn-logged-revocable-proxy-pair
 spawn-post-guest-editor-and-reviewer
 display-post-content display-blog-header
 display-post display-blog)

The implementation of the post and editor pairs is fairly simple:

(define* (spawn-post-and-editor #:key title author body)
 ;; The public blogpost
 (define (^post bcom)
 (methods

29

 ;; fetches title, author, and body, tags with '*post* symbol
 ((get-content)
 ; assign data-triple to the current data
 (define data-triple ($ editor 'get-data))
 ; return tagged with '*post*
 (cons '*post* data-triple))))

 ;; The editing interface
 (define (^editor bcom title author body)
 (methods
 ;; update method can take keyword arguments for
 ;; title, author, and body, but defaults to their current
 ;; definitions
 ((update #:key (title title) (author author) (body body))
 (bcom (^editor bcom title author body)))
 ;; get the current values for title, author, body as a list
 ((get-data)
 (list title author body))))

 ;; spawn and return the post and editor
 (define post (spawn ^post))
 (define editor (spawn ^editor title author body))
 (values post editor)) ; multi-value return of post, editor

define* (spawn-post-and-editor #:key title author body)
 ;; The public blogpost
 define (^post bcom)
 methods
 ;; fetches title, author, and body, tags with '*post* symbol
 (get-content)
 define data-triple ; assign data-triple to
 $ editor 'get-data ; the current data
 cons '*post* data-triple ; return tagged with '*post*

 ;; The editing interface
 define (^editor bcom title author body)
 methods
 ;; update method can take keyword arguments for
 ;; title, author, and body, but defaults to their current
 ;; definitions
 (update #:key (title title) (author author) (body body))
 bcom : ^editor bcom title author body
 ;; get the current values for title, author, body as a list
 (get-data)
 list title author body

 ;; spawn and return the post and editor
 define post : spawn ^post
 define editor : spawn ^editor title author body
 values post editor ; multi-value return of post, editor

This procedure takes three optional keyword arguments, the initial title, author, and body of
the post.18 (If not supplied, they will default to #f, meaning "false".) It returns two values,

18 Guile's define does not support keyword arguments, but define* does. Keyword arguments are simply those
introduced with the #:key syntax. They can be supplied much as they are defined, using #:name value. For
example:

REPL> (define* (hello #:key (who "world"))
 (display (string-append "Hello, " who "\n")))

30

the post (which is the object which represents the readable blogpost), and the editor,
which allows for editing what viewers of the post see.

In this system, the editor is the more powerful object. It contains two methods:

• update: Allows for changing the data associated with the post. The bcom operation
calls ^editor again, producing new behavior with the same bcom capability but
updated (or not) versions of the title, author, and body.

• get-data: Retrieves the current title, author, and body associated with this post.

The post is considerably less powerful, and only has one method, get-content.
Curiously, get-content is a thin wrapper around the editor's get-data, merely
tagging the returned data with the symbol '*post*.

2. Analysis

With ordinary Goblins programming and a safe language environment, Lauren is able to
construct separate post and editor capabilities which refer to the same blogpost. Lauren is
able to choose who she hands these out to. Since Lauren shares the post capability with
Robert but not the editor capability, Robert is able to read the blogpost, but there is no
way for him to change its contents.

All of this is accomplished without any attention by the underlying system to the identities
of Lauren and Robert who are using the software, using ordinary reference passing
behaviors. This is important, because Capability security as ordinary programming
demonstrated that an identity-centric authority model is unsafe due to ambient authority and
confused deputy problems. The solution there of a capability security as ordinary argument
passing extends into Goblins in a natural way. Since Goblins' object model is entirely built

REPL> (hello)
;; => Hello, world
REPL> (hello #:who "Todd")
;; => Hello, Todd

REPL> define* (hello #:key [who "world"])
_____ display : string-append "Hello, " who "\n"
REPL> hello
;; => Hello, world
REPL> hello #:who "Todd"
;; => Hello, Todd

Although this is a common feature of Schemes, it is not actually standard. However, the cons syntax, also introduced
here, is; for more on that, see the Scheme Primer section "Lists and cons".

31

 Figure 3.3.2:

post

editor
title

author

body

R

R

R

W

W

W

https://spritely.institute/static/papers/scheme-primer.html#scheme-lists-and-cons

around behavior constructed from enclosed procedures, an object can only make use of the
references to other objects it possesses in its scope.

This example makes post a comparatively thin object to editor, mostly proxying
information which editor is in charge of, with a small type-tagging symbol added. This
demonstrates how one less powerful object can achieve most of its functionality by
attenuating a more powerful object.

3.3.2. A blog to collect posts

Of course, a blogpost on its own is not itself a blog or newspaper. Lauren wants a collection of
updated posts, not just a singular entry. Time to make the blog!

Lauren invokes spawn-blog-and-admin:

REPL [1]> (define-values (maple-valley-blog maple-valley-admin)
 (spawn-blog-and-admin "Maple Valley News"))

REPL [1]> define-values (maple-valley-blog maple-valley-admin)
_____ spawn-blog-and-admin "Maple Valley News"

spawn-blog-and-admin returns two capabilities. The first is for the blog itself, which Lauren
has locally bound to the variable maple-valley-blog, and which only grants read access to the
current set of posts. maple-valley-admin provides the ability to curate the set of posts itself.
Lauren has a certain vision and standard of post quality she'd like to see held for Maple Valley
News but would like it to be widely read, and thus she will share and encourage wide dissemination
of the former capability but will more carefully guard the latter capability.

Since maple-valley-blog has just been initialized, it unsurprisingly reports having no posts:

REPL [1]> ($ maple-valley-blog 'get-posts)
; => ()

REPL [1]> $ maple-valley-blog 'get-posts
; => ()

Since Lauren is now happy with day-in-park-post, she can add it via maple-valley-
admin, and maple-valley-blog will now report the new post's addition:

REPL [1]> ($ maple-valley-admin 'add-post day-in-park-post)
REPL [1]> ($ maple-valley-blog 'get-posts)
; => (#<local-object ^post>)

REPL [1]> $ maple-valley-admin 'add-post day-in-park-post
REPL [1]> $ maple-valley-blog 'get-posts
; => (#<local-object ^post>)

The blog can now also be read with display-blog:

REPL [1]> (display-blog maple-valley-blog)

REPL [1]> display-blog maple-valley-blog

32

Which prints the following:

** Maple Valley News **

A Day in the Park
=================
 By: Lauren Ipsdale

It was a fine day to take a walk...

Robert tells Lauren he'd love to make an article of his own, and Lauren says she'd love to read it and
see about including it. Robert pens a new post:

;; Run by Robert:
REPL [1]> (define-values (spelling-bee-post spelling-bee-editor)
 (spawn-post-and-editor
 #:title "Spelling Bee a Success"
 #:author "Robert Busyfellow"
 #:body "Maple Valley School held its annual spelling bee..."))

;; Run by Robert:
REPL [1]> define-values (spelling-bee-post spelling-bee-editor)
_________ spawn-post-and-editor
_________ . #:title "Spelling Bee a Success"
_________ . #:author "Robert Busyfellow"
_________ . #:body "Maple Valley School held its annual spelling bee..."

Robert sends this to Lauren for review. Lauren says that it's good, but could use a catchier title.
Robert's years of community newspaper reporting leaves him with exactly the right idea for a
change:

;; Run by Robert:
REPL [1]> ($ spelling-bee-editor 'update
 #:title "Town Buzzing About Spelling Bee")

;; Run by Robert:
REPL [1]> $ spelling-bee-editor 'update
_________ . #:title "Town Buzzing About Spelling Bee"

Lauren checks the post and decides it's ready to go. She adds it to the blog:

REPL [1]> ($ maple-valley-admin 'add-post spelling-bee-post)

REPL [1]> $ maple-valley-admin 'add-post spelling-bee-post

Now maple-valley-blog is starting to look like it's got some real content going!

REPL [1]> (display-blog maple-valley-blog)

REPL [1]> display-blog maple-valley-blog

** Maple Valley News **

33

Town Buzzing About Spelling Bee
===============================
 By: Robert Busyfellow

Maple Valley School held its annual spelling bee...

A Day in the Park
=================
 By: Lauren Ipsdale

It was a fine day to take a walk...

1. Implementation

Here is the core implementation of spawn-blog-and-admin:

;; Blog main code
;; ==============

(define (spawn-blog-and-admin title)
 (define posts
 (spawn ^cell '()))

 (define (^blog bcom)
 (methods
 ((get-title) title) ; return the title, as a value
 (get-posts) ($ posts 'get))) ; fetch and return the value of posts

 (define (^admin bcom)
 (methods
 ((add-post post)
 (define current-posts
 ($ posts 'get))
 (define new-posts
 (cons post current-posts)) ; prepend post to current-posts
 ($ posts 'set new-posts))))

 (define blog (spawn ^blog))
 (define admin (spawn ^admin))
 (values blog admin))

;; Blog main code
;; ==============

define (spawn-blog-and-admin title)
 define posts
 spawn ^cell '()

 define (^blog bcom)
 methods
 (get-title)
 . title ; return the title, as a value
 (get-posts)
 $ posts 'get ; fetch and return the value of posts

 define (^admin bcom)
 methods
 (add-post post)

34

 define current-posts
 $ posts 'get
 define new-posts
 cons post current-posts ; prepend post to current-posts
 $ posts 'set new-posts

 define blog : spawn ^blog
 define admin : spawn ^admin
 values blog admin

Here you see how lexical scope becomes a powerful feature for capability systems. posts,
a cell which stores the current state of which articles are valid posts for this blog, is within
the scope of the code for both blog and admin, which both utilize it within the scopes of
their constructors ^blog and ^admin internally. However, while blog and admin are
returned directly from spawn-blog-and-admin, posts never directly leaves the
closure. Thus posts becomes a fully encapsulated coordination point between blog and
admin.

2. Analysis

35

 Figure 3.3.3:

blog posts adminR W

spawn-blog-and-admin

The similarity between the patterns of spawn-post-and-editor and spawn-blog-
and-admin is mostly clear, but what is interesting is in where they differ. While both
return two capabilities, one effectively for reading and one effectively for writing, spawn-
post-and-editor accomplished its job by having posts mostly proxy a subset of
behavior of editors. In spawn-blog-and-admin, the roles are completely separated,
and instead the encapsulated object of posts serves as the intermediary data structure that
the two other objects both use to coordinate reading current information (with blog) and
writing current information (with admin).

3.3.3. Group-style editing

One implication from the way this code is currently written is that the blog is mostly a kind of
aggregator of posts. While Lauren added Robert's post to Maple Valley News's collection of
blogposts, since Robert did not share the edit capability with Lauren, Lauren cannot edit the post if
she discovers a problem.

This can be an acceptable design, but Lauren has decided that she would like to ensure that any
posts that are on the blog are editable by her or any other admins she gives access to. She also does
not want to have to keep track of which edit capability is associated with which post: if she is
looking at a post and catches an error, she wants to be able to jump straight into correcting it.
Lauren wants to make sure her blogging administration software helps her ensure she is only adding
objects which uphold these properties.

Under this rearchitecture, the admin interface is directly involved in constructing new posts and
editors:

36

 Figure 3.3.4:

post

editor
title

author

body

R

R

R

W

W

W

blog posts adminR W

spawn-blog-and-admin

REPL [1]> (define-values (bumpy-ride-post bumpy-ride-editor)
 (spawn-adminable-post-and-editor
 (maple-valley-admin
 #:title "Main Street's Bumpy Ride"
 #:author "Lauren Ipsdale")))

REPL [1]> define-values (bumpy-ride-post bumpy-ride-editor)
_________ spawn-adminable-post-and-editor
_________ . maple-valley-admin
_________ . #:title "Main Street's Bumpy Ride"
_________ . #:author "Lauren Ipsdale"

Using this approach, Lauren could edit bumpy-ride-post using bumpy-ride-editor, but
she does not need to since she can also use maple-valley-admin to edit:

REPL [1]> ($ maple-valley-admin 'edit-post
 bumpy-ride-post
 #:body "Anyone who's driven on main street recently...")

REPL [1]> $ maple-valley-admin 'edit-post
_________ . bumpy-ride-post
_________ . #:body "Anyone who's driven on main street recently..."

This new code also provides an assurance that any blogposts which are added are created through
the internals of the code which runs "Maple Valley News". It will not be possible for any other
object to spoof being a post which will not grant a user of maple-valley-admin the ability to
edit the post and still be added to the blog.

As a contrived example, pretend that a malicious actor wants to ruin Lauren's reputation and has
somehow gotten access to a few pieces of the blog infrastructure, but only has access to the add-
post method of maple-valley-admin. This is the best they can do:

REPL [1]> (define-values (mallet-seal mallet-unseal mallet-sealed?)
 (make-sealer-triplet))
REPL [1]> (define-values (shmaple-shmalley-post shmaple-smalley-editor)
 (spawn-post-and-editor-internal
 mallet-seal
 #:title "Maple Valley More Like Shmaple Shmalley"
 #:author "Lauren Ipsdale"
 #:body "I hate Maple Valley..."))
REPL [1]> (<- spoofed-maple-valley-admin
 'add-post shmaple-shmalley-post)
; => error: Self-proof not for this post ...

REPL [1]> define-values (mallet-seal mallet-unseal mallet-sealed?)
_________ make-sealer-triplet
REPL [1]> define-values (shmaple-shmalley-post shmaple-smalley-editor)
_________ spawn-post-and-editor-internal
_________ . mallet-seal
_________ . #:title "Maple Valley More Like Shmaple Shmalley"
_________ . #:author "Lauren Ipsdale"
_________ . #:body "I hate Maple Valley..."
REPL [1]> <- spoofed-maple-valley-admin 'add-post shmaple-shmalley-post
;; => error: Self-proof not for this post ...

As you can see, while Mallet is able to make their own sealers and unsealers, these do not

37

correspond to the admin object's sealer and unsealer. Because of this, they cannot be used for
anything dangerous. In other words: Mallet does not have it, so they cannot use it!

1. Pre-Implementation: Sealers and unsealers

This example relies on a concept called "sealers and unsealers". Sealers and unsealers have
an analogy with public key cryptography, where sealing resembles encryption, and
unsealing resembles decryption. A third component, a brand check predicate, can check
whether or not a sealed object was sealed by its corresponding sealer, and with a bit of work,
the example will show it can operate as the equivalent of signature verification. What is
astounding is that all three of these operations can work without any cryptography at all,
implemented purely in programming language abstractions. (The details of implementing
sealers and unsealers can be seen in Appendix: Implementing sealers and unsealers

To make this clearer, imagine a scenario where you are sealing lunchtime meals using
sealers and unsealers. Your rival, who wishes to sabotage you, does the same:

REPL [1]> (define-values (our-lunch-seal our-lunch-unseal our-can?)
 (make-sealer-triplet))
REPL [1]> (define-values (rival-lunch-seal rival-lunch-unseal rival-can?)
 (make-sealer-triplet))

REPL [1]> define-values (our-lunch-seal our-lunch-unseal our-can?)
_________ make-sealer-triplet
REPL [1]> define-values (rival-lunch-seal rival-lunch-unseal rival-can?)
_________ make-sealer-triplet

You give your customer the unsealer, the delivery driver the brand predicate, and keep the
sealer privately to yourself.

The contents of sealed cans are private:

REPL [1]> (our-lunch-seal 'fried-rice)
; => #<seal>

REPL [1]> our-lunch-seal 'fried-rice
; => #<seal>

Your customer wants some chickpea salad, so seal some for them:

REPL [1]> (define chickpea-lunch (our-lunch-seal 'chickpea-salad))

REPL [1]> define chickpea-lunch
_________ our-lunch-seal 'chickpea-salad

Thankfully your truck driver is able to check that the food they are to deliver really is from
you. (You have a reputation to uphold!)

REPL [1]> (our-can? chickpea-lunch)
; => #t (true)
REPL [1]> (our-can? (rival-lunch-seal 'melted-ice-cream))
; => #f

38

REPL [1]> our-can? chickpea-lunch
; => #t (true)
REPL [1]> our-can?
_________ rival-lunch-seal 'melted-ice-cream
; => #f

And the customer is able to open it just fine:

REPL [1]> (our-lunch-unseal chickpea-lunch)
; => 'chickpea-salad

REPL [1]> our-lunch-unseal chickpea-lunch
; => 'chickpea-salad

Whew!

2. Implementation

This will require re-architecting the post/editor and blog/admin tooling to enable this new
functionality, adding support for sealers and a few new methods.

The new version of post/editor spawning will no longer be used directly by users, so also
update its name, adding a -internal suffix.

(define* (spawn-post-and-editor-internal blog-sealer #:key title author
body)

39

 Figure 3.3.5:

Lauren admin'new-post-and-editor

1.

post

editor
title

author

body

R

R

R

W

W

W

Lauren admin

2.

post

editor
title

author

body

R

R

R

W

W

W

Lauren admin'add-post

3.

 ;; The public blogpost
 (define (^post bcom)
 (methods
 ;; fetches title, author, and body, tags with '*post* symbol
 ((get-content)
 ; assign data-triple to the current data
 (define data-triple ($ editor 'get-data))
 (cons '*post* data-triple)) ; return tagged with '*post*
 ;; *New*: get a sealed version of the editor from anywhere
 ((get-sealed-editor)
 (blog-sealer (list '*editor* editor)))
 ;; *New*: get a sealed version of self for self-attestation
 ((get-sealed-self)
 (blog-sealer (list '*post-self-proof* post)))))

 ;; The editing interface
 (define (^editor bcom title author body)
 (methods
 ((update #:key (title title) (author author) (body body))
 (bcom (^editor bcom title author body)))
 ((get-data)
 (list title author body))))

 ;; spawn and return the post and editor
 (define post (spawn ^post))
 (define editor (spawn ^editor title author body))
 (values post editor))

define* (spawn-post-and-editor-internal blog-sealer #:key title author
body)
 ;; The public blogpost
 define (^post bcom)
 methods
 ;; fetches title, author, and body, tags with '*post* symbol
 (get-content)
 define data-triple ; assign data-triple to
 $ editor 'get-data ; the current data
 cons '*post* data-triple ; return tagged with '*post*
 ;; *New*: get a sealed version of the editor from anywhere
 (get-sealed-editor)
 blog-sealer : list '*editor* editor
 ;; *New*: get a sealed version of self for self-attestation
 (get-sealed-self)
 blog-sealer : list '*post-self-proof* post

 ;; The editing interface
 define (^editor bcom title author body)
 methods
 (update #:key (title title) (author author) (body body))
 bcom : ^editor bcom title author body
 (get-data)
 list title author body

 ;; spawn and return the post and editor
 define post : spawn ^post
 define editor : spawn ^editor title author body
 values post editor

There are actually only three changes from the prior implementation, spawn-post-and-

40

editor:

• This version takes one required argument, blog-sealer, which will be passed in by
the admin object which creates the post/editor pair.

• It adds two new methods to post:

• get-sealed-editor: Uses blog-sealer to seal the corresponding editor
object, allowing a relevant admin object to be able to unseal any post straight from
the post itself (analogous to encryption). The '*editor* symbol is stored within
the seal as a type tag indicating the purpose of the seal.

• get-sealed-self: Uses blog-sealer to seal the post itself to attest to the
admin that it was indeed created by the blog/admin code itself (analogous to a
cryptographic signature). Like the previous method, it also stores a type tag within
the seal indicating its purpose, here '*post-self-proof*.

The blog/admin spawning code also needs to be updated so that it will be able to cooperate
with the new post/editor code:

(define (new-spawn-blog-and-admin title)
 ;; *New:* sealers / unsealers relevant to this blog
 (define-values (blog-seal blog-unseal blog-sealed?)
 (make-sealer-triplet))

 (define posts
 (spawn ^cell '()))

 (define (^blog bcom)
 (methods
 ((get-title) title)
 ((get-posts) ($ posts 'get))))

 (define (^admin bcom)
 (methods
 ;; *New:* A method to create posts specifically for this blog
 ((new-post-and-editor #:key title author body)
 (define-values (post editor)
 (spawn-post-and-editor-internal
 blog-seal
 #:title title
 #:author author
 #:body body))
 (list post editor))

 ;; *Updated:* check that a post was made (and is updateable)
 ;; by this blog
 ((add-post post)
 ;; (This part is the same as in the last version)
 (define current-posts ($ posts 'get))
 ;; prepend post to current-posts
 (define new-posts (cons post current-posts))
 ;; *New*: Ensure this is a post from this blog
 ;; This is accomplished by asking the post to provide the sealed
 ;; version "of itself". The `blog-unseal` method will throw an
error
 ;; if it is sealed by anything other than `blog-seal
 (define post-self-proof
 ($ post 'get-sealed-self
 (match (blog-unseal post-self-proof)

41

 (('*post-self-proof* obj) ; match against tagged proof
 (unless (eq? obj post) ; equality check: same object?
 (error "Self-proof not for this post"))))))
 ;; Checks out, update the set of posts
 ($ posts 'set new-posts))

 ;; *New:* A method to edit any post associated with this blog
 ((edit-post post #:rest args)
 (define sealed-editor
 ($ post 'get-sealed-editor))
 (define editor
 (match (blog-unseal sealed-editor)
 (('*editor* editor) ; match against tagged editor
 editor)))
 (apply $ editor 'update args))))

 (values
 (spawn ^blog)
 (spawn ^admin)))

define (new-spawn-blog-and-admin title)
 ;; *New:* sealers / unsealers relevant to this blog
 define-values (blog-seal blog-unseal blog-sealed?)
 make-sealer-triplet

 define posts
 spawn ^cell '()

 define (^blog bcom)
 methods
 (get-title)
 . title
 (get-posts)
 $ posts 'get

 define (^admin bcom)
 methods
 ;; *New:* A method to create posts specifically for this blog
 (new-post-and-editor #:key title author body)
 define-values (post editor)
 spawn-post-and-editor-internal
 . blog-seal
 . #:title title
 . #:author author
 . #:body body
 list post editor

 ;; *Updated:* check that a post was made (and is updateable)
 ;; by this blog
 (add-post post)
 ;; (This part is the same as in the last version)
 define current-posts
 $ posts 'get
 define new-posts
 cons post current-posts ; prepend post to current-posts
 ;; *New*: Ensure this is a post from this blog
 ;; This is accomplished by asking the post to provide the sealed
 ;; version "of itself". The `blog-unseal` method will throw an
error

42

 ;; if it is sealed by anything other than `blog-seal
 define post-self-proof
 $ post 'get-sealed-self
 match : blog-unseal post-self-proof
 ('*post-self-proof* obj) ; match against tagged proof
 unless : eq? obj post ; equality check: same object?
 error "Self-proof not for this post"
 ;; Checks out, update the set of posts
 $ posts 'set new-posts

 ;; *New:* A method to edit any post associated with this blog
 (edit-post post #:rest args)
 define sealed-editor
 $ post 'get-sealed-editor
 define editor
 match : blog-unseal sealed-editor
 ('*editor* editor) ; match against tagged editor
 . editor
 apply $ editor 'update args

 values
 spawn ^blog
 spawn ^admin

There are several new additions:

• The blog calls make-sealer-triplet to instantiate blog-seal (the sealer),
blog-unseal (the unsealer), and blog-sealed? (the brand-check predicate).

• ^admin receives three key changes:

• New method: new-post-and-editor is used to create post/editor pairs by
running spawn-post-and-editor-internal (which was defined by the
previous code block).

• Updated method: add-post now checks that this is a post made by the blog itself.
This is accomplished by asking the post for its supplied self-proof. This self-proof is
returned sealed and must be unsealed by blog-unseal, which will throw an
exception if not sealed by blog-seal, ensuring this is a post created by (and thus
editable in the future by) the blog. The unsealed value should be a list tagged with
the purpose of '*post-self-proof* and the object to check, the latter of which
should have the same identity (compared via the identity-comparison procedure
eq?) as post.

• New method: edit-post allows for editing a post even without access to its
corresponding editor object. This is accomplished by calling the 'get-sealed-
editor method on a post. The admin interface uses the blog-unsealer to
extract the type-tagged editor. It uses apply to take the remaining arguments passed
into edit-post and passes them along to the unsealed editor.

Lauren would create a new maple-valley-admin and maple-valley-blog with
this procedure as before:

REPL [1]> (define-values (maple-valley-blog maple-valley-admin)
 (new-spawn-blog-and-admin "Maple Valley News"))

REPL [1]> define-values (maple-valley-blog maple-valley-admin)

43

_________ new-spawn-blog-and-admin "Maple Valley News"

Finally, this last bit is some convenience for consistency in the examples, since actors cannot
return multiple values from their behavior:

(define (spawn-adminable-post-and-editor admin . args)
 (define post-and-editor
 (apply $ admin 'new-post-and-editor args))
 (match post-and-editor
 ((post editor) ; match against list of post and editor
 (values post editor)))) ; return as values for consistency in
examples

define (spawn-adminable-post-and-editor admin . args)
 define post-and-editor
 apply $ admin 'new-post-and-editor args
 match post-and-editor
 (post editor) ; match against list of post and editor
 values post editor ; return as values for consistency in examples

3. Analysis

An administrator encountering a blogpost which is worth editing will want to edit it
immediately. In an access control list style system, the way to accomplish this would be to
assign users to an "editor" group, but this is a system which aims to avoid the security
problems associated with traditional access control list and related identity-centric authority
systems.

Instead, there is an approach called rights amplification: a sealed capability is attached to the
post, giving access to the more powerful editor object, but this object can only be used
through the corresponding unsealer. The only object empowered to make use of the unsealer
is the blog's admin object, and so only by going through the admin is editing from the post
possible.

3.3.4. Revocation and accountability

Lauren decides that it may be time for her to not be the only person running things, but she wants to
make sure that she can hold anyone she gives access to accountable for the decisions they make
and, if something inappropriate happens, revoke that access.

Lauren realizes she can extend her system to accommodate this plan without rewriting any of the
existing code. Instead she will define some new abstractions that compositionally extend the system
that exists.

The first thing she will need is a logger.

REPL [1]> (define admin-log (spawn ^logger))

REPL [1]> define admin-log
_________ spawn ^logger

Robert has been a great collaborator and has expressed interest in helping run things. Lauren
decides it's time to take him up on it.

Lauren uses a new utility, spawn-logged-revocable-proxy-pair, which can proxy any
object and log actions associated with a username meaningful to Lauren:

44

REPL [1]> (define-values (admin-for-robert roberts-admin-revoked?)
 (spawn-logged-revocable-proxy-pair
 "Robert" ; username Lauren holds responsible
 maple-valley-admin ; object to proxy
 admin-log)) ; log to write to

REPL [1]> define-values (admin-for-robert roberts-admin-revoked?)
_________ spawn-logged-revocable-proxy-pair
_________ . "Robert" ; username Lauren holds responsible
_________ . maple-valley-admin ; object to proxy
_________ . admin-log ; log to write to

The first of the two returned capabilities, admin-for-robert, is the one she sends Robert. The
second, roberts-admin-revoked?, is the cell which defaults to false, but Lauren can set to
be true at any time, at which point messages from Robert will no longer pass through.

Robert thanks Lauren for the capability and soon decides that Lauren's post would be better with a
different title:

REPL [1]> (<- admin-for-robert 'edit-post bumpy-ride-post
 #:title "Main Street Takes Some Bumps")

REPL [1]> <- admin-for-robert 'edit-post bumpy-ride-post
_________ . #:title "Main Street Takes Some Bumps"

Later, Lauren suddenly notices with irritation that her blogpost isn't named what she remembered it
being. She checks the log:

REPL [1]> ($ admin-log 'get-log)
; => ((*entry*
; user "Robert"
; object #<local-object ^admin>
; args (edit-post #<local-object ^post>
; #:title "Main Street Takes Some Bumps")))

REPL [1]> $ admin-log 'get-log
; => ((*entry*
; user "Robert"
; object #<local-object ^admin>
; args (edit-post #<local-object ^post>
; #:title "Main Street Takes Some Bumps")))

Lauren decides that Robert shouldn't be editing her or anyone else's posts on the blog until they've
had a serious conversation.

REPL [1]> ($ roberts-admin-revoked? 'set #t)

REPL [1]> $ roberts-admin-revoked? 'set #t

Robert tries to make another edit to the blogpost and notices that it didn't go through. He sees a
frustrated message in his inbox from Lauren and apologizes. The two of them agree on what the
proper etiquette for editing someone else's post should be in the future and Lauren feels satisfied
enough to renew Robert's access.

45

REPL [1]> ($ roberts-admin-revoked? 'set #f)

REPL [1]> $ roberts-admin-revoked? 'set #f

1. Implementation

The logger should look fairly familiar by now:

(define (^logger bcom)
 (define log (spawn ^cell '())) ; log starts out as the empty list

 (methods
 ;; Add an entry to the log of:
 ;; - the username accessing the log
 ;; - the object they were accessing
 ;; - the arguments they passed in
 ((append-to-log username object args)
 (define new-log-entry
 (list '*entry* 'user username 'object object 'args args))
 (define current-log ($ log 'get))
 (define new-log (cons new-log-entry current-log)) ; prepend new-log-
entry
 ($ log 'set new-log))

 ((get-log) ($ log 'get))))

define (^logger bcom)
 define log
 spawn ^cell '() ; log starts out as the empty list

 methods
 ;; Add an entry to the log of:
 ;; - the username accessing the log
 ;; - the object they were accessing
 ;; - the arguments they passed in
 (append-to-log username object args)
 define new-log-entry
 list '*entry* 'user username 'object object 'args args
 define current-log
 $ log 'get
 define new-log
 cons new-log-entry current-log ; prepend new-log-entry
 $ log 'set new-log

 (get-log)
 $ log 'get

The revocable proxy pair takes the associated username, object to proxy, and log to write to:

(define (spawn-logged-revocable-proxy-pair username object log)
 ;; The cell which keeps track of whether or not the proxy user's
 ;; access is revoked.
 (define revoked? (spawn ^cell #f))

 ;; The proxy which both logs and forwards arguments (if not revoked)
 (define (^proxy bcom)
 (lambda args
 ;; check if access has been revoked
 (when ($ revoked? 'get)

46

 (error "Access revoked!"))
 ;; If not, first send a message to log the access
 ($ log 'append-to-log username object args)
 ;; Then proxy the invocation to the object asynchronously
 (apply $ object args)))

 (define proxy (spawn ^proxy))
 (values proxy revoked?))

define (spawn-logged-revocable-proxy-pair username object log)
 ;; The cell which keeps track of whether or not the proxy user's
 ;; access is revoked.
 define revoked?
 spawn ^cell #f

 ;; The proxy which both logs and forwards arguments (if not revoked)
 define (^proxy bcom)
 lambda args
 ;; check if access has been revoked
 when ($ revoked? 'get)
 error "Access revoked!"
 ;; If not, first send a message to log the access
 $ log 'append-to-log username object args
 ;; Then proxy the invocation to the object asynchronously
 apply $ object args

 define proxy
 spawn ^proxy

 values proxy revoked?

It returns two cells, the proxy, and the cell which is used to control whether or not access is
revoked.

47

2. Analysis

48

 Figure 3.3.6:

Robert

vat b

vat a

log

revoked?

Lauren admin proxy

Since Robert is never given access to the admin object directly, he has to operate using the
admin-for-robert object which Lauren gives him. This object reports Robert's actions
to a log which Lauren controls and will only operate if Lauren decides not to flip the
revoked? cell to be true. Lauren is able to resume access through the capability should
she so choose by flipping the revoked? cell's value back to false.

Nothing is preventing Robert from sharing admin-for-robert with anyone else
(including programs or services Robert runs), but Lauren will hold Robert accountable for
any actions taken with the admin-for-robert capability. This is a feature, and it is
extended in the next section.

3.3.5. Guest post with review

Some time has passed and Maple Valley News is doing well. Robert and Lauren have been
knocking out a lot of well celebrated articles covering their community. Lauren is busy figuring out
next steps for the newspaper, but Robert is exhausted and needs to go on the vacation he has long
promised his family they would take. But Robert has an idea for a guest post article that could be
published in his absence without having to interrupt Lauren.

Robert has a friend who works at the local school, Maple Valley Elementary, and has told Robert

49

 Figure 3.3.7:

Robert

vat b

vat a

log

revoked?

Lauren admin proxy

about how a young student named Matilda Sample won a distinguished prize in the regional science
fair, assisted with the mentorship of her science teacher Mx. Beaker. Robert thinks this would be a
great idea for a story. Robert asks if Matilda would be willing to write a story about her experience
and whether Mx. Beaker would be willing to review and determine if and when the article would be
good enough to publish.

Everyone agrees, so Robert sets everything up. Robert runs the following:

;; Robert's interactions
REPL [1]> (define-values (science-fair-post science-fair-editor
 science-fair-reviewer)
 (spawn-post-guest-editor-and-reviewer
 "Matilda Sample" admin-for-robert))

;; Robert's interactions
REPL [1]> define-values (science-fair-post science-fair-editor
_________ science-fair-reviewer)
_________ spawn-post-guest-editor-and-reviewer "Matilda Sample" admin-for-
robert

Robert now sends out a message to Matilda and another to Mx. Beaker with the capabilities they
will need:

• science-fair-post is given to both Matilda and Mx. Beaker and allows either of them
to read the current state of the post.

• science-fair-editor is given to Matilda only; this allows Matilda to edit and author
the post. This capability only allows Matilda to change the title and body, but not the author
(which Robert has already set to "Matilda Sample"). However, this capability does not give
Matilda the authority to publish the post.

• science-fair-reviewer is given to Mx. Beaker; this allows Mx. Beaker to approve
and publish the post (but also will prevent future edits in the process). However, this
capability does not give Mx. Beaker the authority to modify the post.

Matilda begins writing the post:

;; Matilda's interactions
REPL [1]> (<- science-fair-editor 'set-body
 "My name is Matilda and I am twelve. I won the science fair...")

;; Matilda's interactions
REPL [1]> <- science-fair-editor 'set-body
_________ . "My name is Matilda and I am twelve. I won the science fair..."

Matilda asks Mx. Beaker if it's good enough to publish. Mx. Beaker tells Matilda, not yet! The post
needs a title, and Matilda's teacher explains how to make the post tell a more engaging and personal
narrative.

Matilda updates the title and rewrites the body:

;; Matilda's interactions
REPL [1]> (<- science-fair-editor 'set-title
 "Winning the Middle School Science Fair: A Personal Account")
REPL [1]> (<- science-fair-editor 'set-body
 "At twelve years old, winning the local science fair has
been...")

50

;; Matilda's interactions
REPL [1]> <- science-fair-editor 'set-title
_________ . "Winning the Middle School Science Fair: A Personal Account"
REPL [1]> <- science-fair-editor 'set-body
_________ . "At twelve years old, winning the local science fair has
been..."

After another prompt for review, Mx. Beaker decides that the post now looks great and will be a
great representation of both Matilda and the school. Feeling proud of their student, Mx. Beaker
presses approve:

;; Teacher's interactions
REPL [1]> (<- science-fair-reviewer 'approve)

;; Teacher's interactions
REPL [1]> <- science-fair-reviewer 'approve

And the post goes live!

Readers of the blog will see the new post, and will be able to share it widely:

;; Widely runnable (by blog readers and those they share it with)
REPL [1]> (display-blog maple-valley-bloge)

;; Widely runnable (by blog readers and those they share it with)
REPL [1]> display-blog maple-valley-blog

Robert, still on vacation, receives a message from Lauren. "Hey, I just saw that blogpost go live! It
looks great! But I see in the log that you posted it… didn't you promise you weren't going to work
while you left on vacation?"

Robert smiles and types up a response. "Funny thing that… nice things can happen that serve
multiple peoples' interests, and if you think far ahead enough, sometimes when you aren't even
around…"

1. Implementation

Robert's clever solution is custom code. He was able to write it without even having to
change anything about how the core blogging code worked:

;;; Guest post with review
;;; ======================

;; The restricted-editor user can only change the title and body, but
;; not their name.
;; They cannot conspire with their teacher to be someone else on the
;; newspaper.
;;
;; The teacher cannot do anything but approve the student's post to
;; go live. They cannot change the student's choice of language,
;; only ask them to change it before approval.

(define (spawn-post-guest-editor-and-reviewer author blog-admin)
 (define-values (post editor)
 (spawn-adminable-post-and-editor
 blog-admin #:author author))

51

 (define submitted-already? (spawn ^cell #f))

 (define (ensure-not-submitted)
 (when ($ submitted-already? 'get)
 (error "Already submitted!")))

 (define (^reviewer bcom)
 (methods
 ((approve)
 (ensure-not-submitted
 ($ blog-admin 'add-post post)
 ($ submitted-already? 'set #t)))))

 (define (^restricted-editor bcom)
 (methods
 ((set-title new-title)
 (ensure-not-submitted
 ($ editor 'update #:title new-title)))
 ((set-body new-body)
 (ensure-not-submitted
 ($ editor 'update #:body new-body)))))

 (define reviewer (spawn ^reviewer))
 (define restricted-editor (spawn ^restricted-editor))
 (values post restricted-editor reviewer))

;;; Guest post with review
;;; ======================

;; The restricted-editor user can only change the title and body, but
;; not their name.
;; They cannot conspire with their teacher to be someone else on the
;; newspaper.
;;
;; The teacher cannot do anything but approve the student's post to
;; go live. They cannot change the student's choice of language,
;; only ask them to change it before approval.

define (spawn-post-guest-editor-and-reviewer author blog-admin)
 define-values (post editor)
 spawn-adminable-post-and-editor
 . blog-admin
 . #:author author

 define submitted-already?
 spawn ^cell #f

 define (ensure-not-submitted)
 when : $ submitted-already? 'get
 error "Already submitted!"

 define (^reviewer bcom)
 methods
 (approve)
 ensure-not-submitted
 $ blog-admin 'add-post post
 $ submitted-already? 'set #t

 define (^restricted-editor bcom)

52

 methods
 (set-title new-title)
 ensure-not-submitted
 $ editor 'update #:title new-title
 (set-body new-body)
 ensure-not-submitted
 $ editor 'update #:body new-body

 define reviewer : spawn ^reviewer
 define restricted-editor : spawn ^restricted-editor
 values post restricted-editor reviewer

This uses patterns already shown. The code above has an encapsulated post and editor
but only exports post directly. The post is already configured at spawn-post-and-
editor time with the relevant author. restricted-editor is configured to allow
changing the title and the body, but not the author.

Once reviewer's 'approve method is called, the encapsulated blog-admin will be
invoked to add the post to the blog. This also flips the encapsulated submitted-
already? cell to true. At this point, reviewer and restricted-editor will be
revoked, throwing an error if someone tries to use them.

2. Analysis

53

While variants of all the techniques shown in this example have already been shown, the
astounding thing is that the way they are arranged permits cooperation between multiple
parties:

• Lauren wishes to hold Robert responsible for any updates to the blog Robert makes.
Since Robert uses his admin capability, he is still held accountable for whatever actions
are taken.

• Robert wishes to have interesting new content added to the blog while both he and
Lauren are unavailable to actively participate. By bringing multiple stakeholders to the
table, he feels confident that quality both he and Lauren would feel comfortable with
will be maintained.

• Matilda wants to be able to talk about her experiences, and wants to be able to tell them
in her own words and not be misrepresented. She is willing to receive mentorship from
her teacher and apply this feedback to produce an improved article, even though she
wants to write the article herself.

54

 Figure 3.3.8:

Matilda

vat c

Mx. Beaker

vat b

post

admin reviewer

editor
title

author

body

R

R

R

W

W

W

restricted-
editor

already-
submitted?

vat a

• Mx. Beaker wants a quality article that reflects well on their school, their student, and
themselves. However, Mx. Beaker can only approve the post, meaning that they must
convince Matilda of any changes they would like made.

• Robert is assured that neither Mx. Beaker nor Lauren can post the article on the blog
falsely claiming authorship from someone else.

• When Lauren and Robert return from being busy, they will both still be able to use their
admin capabilities to edit the post should they feel it appropriate (though Lauren will
still hold Robert accountable for his changes).

But the most astounding thing of all: this entire arrangement was possible without changing
any of the pre-existing blog code. Robert was able to encode an arrangement that kept
everyone's interests in play, without having to even be present!

3.3.6. Lessons learned

This tutorial has skipped over some important steps intentionally: there is no demonstration of
setting up the network connections between parties, no demonstration of how to produce capability
references which can be passed along offline, and no demonstration of how these posts might be
persisted to long-term storage or upgraded.

Nonetheless, it is has shown some powerful things:

• Distributed objects defined by behavior and bound together through capabilities are
sufficient to represent sophisticated and useful social interactions between multiple parties.

• The authorization mechanism relies on capability references and follows the "if you don't
have it, you can't use it" philosophy. Sharing access remains as simple as reference passing.
Everything is understandable as ordinary code.

• Despite the fact that the authorization mechanism itself is ambivalent about the identity of
its participants, attribution of actions can be encoded into the system. Combined with a
revocation mechanism, this permits accountability. This example also added broader group-
style access to administer certain objects. All this without needing an access control list
mechanism or the inherent ambient authority and confused deputy risks associated with such
an approach.

• Goblins is able to encode rich, multi-stakeholder arrangements that benefit everyone. The
guest post with a review example demonstrated that special use cases like this can occur
layered on top of an existing system rather than requiring a messy rewrite of existing
behavior.

3.4. Spritely Goblins as a society of networked objects

The relationship between Spritely Goblins' abstracted distributed object layers can be understood
visually. Consider the following relationship graph representing communicating objects:

.----------------------------------. .----------------------.
Machine 1		Machine 2
=========		=========
.--------------. .---------. ,-. ,-.		
	Vat A	
	,-----.	
	(Alice)-------->(Bob)---' `-' `-'	
	`-----'	

55

	\		^				`-----'	
	V	`----	----'					
	,------.		,-. ,-.					
	(Alfred)		_______/	______/	__	,------.		
	`------'	\	\	'----(Carlos)				
		`-' `-'	`------'					
'--------------'								
		'------------'						
'----------------------------------' '----------------------'

In the above diagram:

• Two machines (Machine 1 and Machine 2) are running separately from each other, but
connected to each other over the network via OCapN and CapTP.

• Vat A and Vat B are event loops which live on Machine 1, and Vat C is an event
loop which lives on Machine 2.

• The individual objects (represented by circles) live in vats, aka event loops which contain
objects. Alice and Alfred live in Vat A, Bob lives in Vat B, and Carol and
Carlos live on Vat C. (While these objects have human-like names, they're just Goblins
objects.)

• The arrows between the objects represent references these objects have to each other.
Alice has references to both Alfred and Bob. Bob has a reference to Carol. Carlos
has a reference to Bob.

• Two objects which are in the same vat are considered near each other, and thus can invoke
each other synchronously, whereas any objects not in the same vat are considered far from
each other. Any objects can invoke each other by asynchronous message passing as long as
they have a reference to each other.

• Not pictured: each vat has an actormap, an underlying transactional heap used for object
communication. This is what permits transactionality and time travel. (Actormaps can also
be used independently of vats for certain categories of applications.)

Another way to think about this is via the following abstraction nesting dolls:

(machine (vat (actormap {refr: object-behavior})))

• Machines, which are computers on the network, or more realistically, operating system
processes, which contain…

• Vats, which are communicating event loops, which contain…

• Actormaps, transactional heaps, which contain…

• A mapping of References to Object Behavior.

3.5. The vat model of computation

Goblins follows what is called the vat model of computation. A vat is an event loop that manages a
set of objects which are near to each other (and similarly, objects outside of a vat are far from each
other), as well as messages between them and from other vats.

 Internal Vat Schematics
 =========================

 stack heap

56

 ($) (actormap)
 .-------.----------------------. -.
 | | | |
 | | ,-. | |
 | | (obj) ,-. | |
 | | `-' (obj) | |
 | ___ | `-' | |
 | |___) | ,-. | |- actormap
 | ___ | (obj) | | territory
 | |___) | `-' | |
 | ___ | | |
 | |___) | | |
 +-------'----------------------+ -'
queue | ___ ___ ___ | -.
 (<-) | |___) |___) |___) | |- event loop

 '------------------------------' -' territory

The above schematic of a vat models its constituent parts. The actormap (the heap) holds the objects
(actors) local to that vat. Each object in a given vat's actormap are near to each other. The stack
holds synchronous messages, which are conventional calls; these are invocations of near objects.
The queue holds asynchronous messages, which can either be between near objects, or from other
vats and thus from far objects.

Objects which are near can perform synchronous call-return invocations in a manner familiar to
most sequential programming languages used by most programmers today. Aside from being a
somewhat more convenient way to program, sequential invocation is desirable because of cheap
transactionality, which is expounded more later. Goblins uses the $ operator to perform
synchronous operations.

Both near and far objects are able to invoke each other asynchronously using asynchronous
message passing (in the same style as the classic actor model)19. It does not generally matter
whether or not a far object is running within the same OS process or machine or one somewhere
else on the network for most programming tasks20; asynchronous message passing works the same
either way. Goblins uses the <- operator to perform asynchronous operations.

The sender of an asynchronous message is handed back a promise to which it can supply callbacks,
listening for the promise to be fulfilled with a value or broken (usually in case of an unexpected
error). For both programmer convenience and for network efficiency, Goblins supports promise
pipelining: messages can be sent to promises which have not yet been resolved, and will be
forwarded to the target once the promise resolves.21

While the vat model of computation is not new22, Goblins brings some novel contributions to the

19 In the actor model, objects called actors pass fully asynchronous messages to perform computation. An actor in the
classic model processes one incoming message at a time as defined by its current behavior. It may respond in one of
three ways: create and receive a reference to a new actor; send messages to other actors including introducgin them
to other actors it knows about; or specify a change in its behavior for the next message it receives. As there are other
variants of the actor model, this core, general subset is sometimes called the classic actor model. Object capabilities
generally and Spritely in particular build on this model.

20 One situation in which it does matter whether a far object is running on the same machine is in the case of network
session failure. Whereas objects in the same process and, to a lesser extent, on the same machine will be able to rely
on the ability to communicate, those connected across a network have no such guarantees should the connection
between their host machines be broken. This problem can be mitigated with a variety of techniques including store-
and-forward networks.

21 Those familiar with JavaScript may already know the term from JavaScript. Indeed, JavaScript promises are
descended from E and Joule. However, JavaScript does not implement the full version of promises from these
languages; notably, they do not support promise pipelining. Goblins' promises, however, do.

22 The vat model originates in the E programming language and can trace some of its ideas back to E's predecessor

57

http://erights.org/

table in terms of transactionality and time-travel debugging, enhancing an already powerful
distributed programming paradigm.

3.6. Turns are cheap transactions

As usual in the vat model of computation, individual message sends to a vat (event loop) are queued
and then handled one turn at a time, akin to the way board game players take turns around a table
(which is indeed the basis for the term turn). The message, addressing a specific object, is passed to
the recipient object's current behavior. This object may then invoke other near objects (residing
within the same vat), which may themselves invoke other near objects in synchronous and
sequential call-return style familiar to most users of most contemporary programming languages.
Any of these invoked objects may also change their state/behavior (behavior changes appear purely
functional in Goblins; invocations of other actors do not), spawn new objects, invoke ordinary
expressions from the host language, or send asynchronous messages to other objects (which are
only sent if the turn completes successfully).

Special to Goblins is the transactional nature of vat turns: unhandled errors result in a turn being
rolled back automatically (or more accurately, simply never being committed to the root
transactional heap), preventing unintended data corruption. This cheap transactionality means that
errors in Goblins are much less eventful and dangerous to deal with than in most asynchronous
programming languages. Significantly less effort needs to be spent on cleanup when time is
reverted to a point where a mess never occurred.23

3.7. Time-travel distributed debugging

The same transactional-heap design of Goblins can be used for other purposes. A distributed
debugger inspired by E's Causeway is planned, complete with message-tracing mechanisms. This
will be even more powerful when combined with already-demonstrated time travel features,24
allowing programmers to debug a program in the state of an error when it occured.

3.8. Safe serialization and upgrade
Do you, Programmer, take this Object to be part of the persistent state of your
application, to have and to hold, through maintenance and iterations, for past
and future versions, as long as the application shall live?

 —Arturo Bejar

Joule, and has since reappeared in systems such as Agoric's SwingSet kernel. All of these projects are the
brainchildren of Mark Miller.

23 It is well known that the introduction of time and the introduction of local state are the same, introducing both
benefits and costs. Purely functional systems model local state without introducing side effects by using monads,
which re-introduces the benefits of time without being locked into changes which have occured. In other words:
functional programming with monads grants freedom from time. Monads are powerful and beautiful constructs but
are notorious for being difficult to learn to use (though learning to use them sometimes becomes a programmer point
of pride), introducing enormous amounts of explicit plumbing outward to the user, threaded manually through a
user's code. Goblins' design can be perceived as having an implicit monad which grants the user the benefits of time-
travel without the explicit plumbing, allowing the user to focus on the core object behavior aspects of their program.
The ability to be productively oblivious to the above is a goal: most users will never even know or consider the idea
that Goblins contains an implicit monad unless they enjoy reading footnotes of architectural papers.

24 One early demonstration of this idea was shown in the runs-in-your-terminal space shooter game Terminal Phase,
built as a demo to show off Spritely Goblins. The entire core game was built before even considering that time travel
would be an easy feature to add, and a time travel demonstration was added within less than three hours changing no
core game code but merely wrapping the toplevel of the program; its design fell out naturally from what Goblins
already provided in the way it was used.

58

http://www.erights.org/elang/tools/causeway/index.html
https://dustycloud.org/blog/goblins-time-travel-micropreview/
https://gitlab.com/dustyweb/terminal-phase
https://mitpress.mit.edu/sites/default/files/sicp/full-text/sicp/book/node54.html
https://mitpress.mit.edu/sites/default/files/sicp/full-text/sicp/book/node53.html
https://mitpress.mit.edu/sites/default/files/sicp/full-text/sicp/book/node51.html
https://github.com/Agoric/agoric-sdk/tree/master/packages/SwingSet
https://agoric.com/
http://erights.org/history/joule/

Processes crash or close and must be resumed. Behavior changes and representations must change
to accommodate such change. Goblins has an integrated serialization mechanism which simplifies
serialization and upgrade.

The need for state persistence and upgrade is hardly unique to Goblins programs. Much of
programming traditionally involves reading and writing the state of a program to a more persistent
medium, generally files on a disk or some specialized database. Web applications in particular
spend an enormous amount of effort moving between database representations and runtime
behavior, but translating between runtime behavior and persistent state is typically disjoint and its
solution space complicated.

Since Goblins' security model is encoded within the underlying runtime graph, manually scribing
and restoring this structure would be a Sisyphean task in terms of labor and, should it naively trust
objects' own self-descriptions, an entry point for vulnerability.

As an example, consider a multiplayer fantasy game might have to keep track of many rooms, the
inhabitants of those rooms including various monsters and players, players' inventory, and many
clever other objects and mechanisms which might even be defined while the game is running. Ad-
hoc serialization of such a system would be too hard to keep track of cognitively, and so the system
should serialize the process. Asking the objects to self-describe or manipulate the underlying
database could also be dangerous, as objects could claim to have authority that they do not. For
example, in the game, player-built objects should not be able to claim or dispense in-game currency
or grant themselves powers which they did not originally have on restoration.

Spritely Goblins' solution25 is a serialization mechanism which asks objects how they would like to
be serialized, but only allows objects to provide self-portraits utilizing the permissions they already
have.26,27 Goblins' serializer starts with root objects and calls a special serializer method on each
object, asking each object for its self-portrait. This serialization mechanism is sealed off from
normal usage; only the serializer can unseal it, preventing objects from interrogating each other for
information or capabilities they should not have access to.28

Since walking the entire object graph is expensive, serialization can take advantage of reading turn-
transaction-delta information to only serialize objects which have changed, making it performant.

The system is restored by walking the graph in reverse and applying each self-portrait to its build
recipe. Restoring an object ends up being a great time to run upgrade code and as Goblins is built
out it will collect many upgrade patterns into a common library.

The serialized graph can be used for another purpose: to create a running visualization of a stored
ocap system, further helping programmers debug systems and understand the authority graph of a
running system.

25 An alternative would be to use an underlying language runtime serialization system (many Lisp and Smalltalk
systems have supported this for decades). However, this is wasteful; most serialized systems can be restored from a
recipe of their construction rather than their current state at a fraction of the storage cost. Furthermore, the structure
of objects will be subject to change over time, and language-based process persistence misses out an opportunity to
treat restoration as an opportunity for upgrade.

26 The ideas for Spritely's serialization/upgrade mechanism stem from comments by Jonathan A. Rees about "uneval"
and "unapply" and the E programming language's Safe Serialization Under Mutual Suspicion paper (along with
discussions between Randy Farmer and Mark S. Miller while at Electric Communities which preceded this).

27 This system was originally a separated mechanism called Aurie, symbolized by a character made out of fire which
was continuously extinguished and re-awakened like a phoenix. However many programs, and even many of the
standard library pieces which Goblins ships with, were in want of such a system, so Aurie's flame was folded into
Goblins itself.

28 This is a common ocap pattern called rights amplification, explored in Group-style editing.

59

http://erights.org/data/serial/jhu-paper/index.html
https://odontomachus.wordpress.com/2020/12/09/pickling-uneval-unapply/
https://odontomachus.wordpress.com/2020/12/09/pickling-uneval-unapply/

3.9. Distributed behavior and why we need it

In general so far when this paper has spoken of distributed objects, it has been referring to objects
with one specific "location". But many systems are actually more complicated than this. For
example, Alisha and Ben might both be in the same chatroom and there may be a distinct address
for Alisha and Ben's personas; if asked whether or not Carol means the same Alisha as Ben, she
should have no problem saying "yes, this is the same person", and this can be as simple as address
comparison.29 Alisha and Ben may have their own local representations of Carol with their own
local behavior and state, particular to the interests, needs, or knowledge of Carol as she is known
locally to each networked participant.

The Unum Pattern is a conceptual framework that encompasses the idea of a distributed abstract
object with many different presences. One difference between the framing provided by the unum
pattern and most other distributed pattern literature is that the unum pattern is particularly interested
in distributed behavior rather than distributed data. Distributed data may be emergent from
distributed behavior, but it is only one application. In the unum pattern, many different presences
cooperate together performing different roles, sometimes even responding to messages in a manner
semi-opaque to each other.

Consider a teacup sitting on a table in a virtual world. Where does it live? On the server? What
about its representation in your client? What about the representation on another player's client?
What about in your mind? While there is one unum, or "conceptual object", of the teacup, there are
likely many presences representing it. Information and authority pertaining to the teacup may also
be asymmetric;30 you might know that the teacup has a secret note sealed inside it and someone else
might not. While there may be one object which is the canonical presence, possibly serving as a
source of shared identifier to refer to the object, the canonical presence is still a presence.31

29 Actually, saying that this is "as simple as address comparison" is the greatest misleading statement in this entire
paper. Object identity through address comparison, frequently referred to as EQ based on the operator borrowed
from Lisp systems, is one of the most complicated talks debated in the object capability security community. See
also the erights.org pages on Object Sameness and the Grant Matcher Puzzle. These are just the tip of the iceberg of
EQ discussion and debate in the ocap community, and it's no surprise why: when identity is handled incorrectly it
can accidentally behave as a Access Control List (ACL) or inherit their problems of ambient authority and confused
deputies. This is part of the value of finding patterns, to help prevent users from falling into these traps.

30 Exploiting asymmetric authority is the very definition of the confused deputy problem. Its cause is usually emergent
from ambient authority. Phishing attacks are an example of confused deputy problems where the confused deputy is
a human being. Most object capability programming does not have confused deputy issues because to have a
reference to a capability, in the general case, means to have authority to it. However, EQ and rights amplification
(which bottoms out in a kind of EQ) both can re-introduce asymmetry, permitting confused deputies in careless
designs, even to ocap systems. One might suggest removing identity comparison altogether from such systems, and
for many ocap programs this is possible. However a social system is not very useful without identity, so Spritely
must develop patterns that treat identity with care.

31 The above explanation is modified directly from Chip Morningstar's explanation of the Unum. Chip Morningstar co-
founded both Lucasfilms Habitat and Electric Communities (with EC Habitat), both of which are enormous
influences on Spritely's design. He also generously agreed to let us use the unum diagrams above.

60

http://habitatchronicles.com/2019/08/the-unum-pattern/
http://habitatchronicles.com/2019/08/the-unum-pattern/
http://erights.org/elib/equality/grant-matcher/index.html
http://www.erights.org/elib/equality/same-object.html
http://www.erights.org/

Presences in Goblins typically correspond to Goblins objects.32 The unum pattern is typically
implemented via several messaging patterns: the reply pattern, the point-to-point pattern, the
neighbor pattern, and the broadcast pattern. Keen observers might notice that a subset of the unum
pattern, applied to data, is a publish-subscribe (PubSub) system, which is common in social media
architecture design (ActivityPub is more or less a glorified data-centric publish-subscribe classic
actor model implementation designed for social media on the web). For large-scale distribution of
messages, the Amphitheater Pattern will be supported.

32 Outside of Goblins, presences still may exist; it is still acceptable to consider your conception of a teacup to be a
presence. Barring significant advancements in biomechanical integration, presences in your mind of a teacup
probably are not represented directly by a Goblins object.

61

 Figure 3.9.1:

http://www.erights.org/elib/distrib/unum/index.html

However, in recent times there have been advancements in convergent information architectures
with research on conflict-free replicated data types. Goblins plans on implementing a standard
library of CRDT patterns which can be thought of as a "unum construction kit".

4. OCapN: A Protocol for Secure, Distributed Systems
Here, in brief, is a discussion of OCapN (the Object Capability Network), which Spritely Goblins
implements. Spritely is leading the effort to define and produce a draft specification of OCapN to
kickoff a standardization process, the progress of which you can follow in its GitHub repository.
What OCapN provides is a set of layered abstractions so that very little code needs to be aware of
"where" objects live for asynchronous programming, fully capable of functioning with no central
authorities, even on peer-to-peer networks with the default assumption of hostile participants.
While OCapN is already supported by Spritely Goblins, the protocol is general and could be
broadly implemented across programming languages, providing interoperable networked
cooperation.

The layers of OCapN are:

• CapTP: The Capability Transport Protocol (also known as CapTP) provides a distributed,
secure networked object programming abstraction. CapTP provides familiar message
passing patterns with no distinction between asynchronous programming against local vs
remote objects and features:

• Distributed garbage collection: Servers can cooperate to free resources which are no

62

 Figure 3.9.2:

https://github.com/ocapn/ocapn
https://en.wikipedia.org/wiki/Conflict-free_replicated_data_type

longer needed.

• Promise pipelining: Massive parallelization and network optimization. Provides
convenience of sequential programming without round trips.

• Netlayers: CapTP sits on top of the netlayers abstract interface, which allows for
establishing secure connections between two parties. The netlayers abstraction provides:

• Transport protocol agnosticism: Multiple types of netlayers are supported. Fully peer-
to-peer networks such as Tor Onion Services, I2P, and libp2p can work alongside more
contemporary networks such as DNS + TLS. Even encrypted sneakernets are possible.

• Temporal connection abstraction: Both live sessions for high-performance socketed
connections and high-delay, intermittently offline/online store-and-forward systems are
supported.

• URI structure and certificates: Entrance to the network must be bootstrapped and object
locations identified; a unification of URI schemes provides the information an OCapN-
aware language/library can use to engage connectivity. Certificates provide similar
functionality but with different tradeoffs: less simplicity in sharing, but also less
vulnerability to leakage.

5. Application safety, library safety, and beyond
Users have faced an impossible choice: between the full authority to get your work done
and destroy your machine or authority so puny that you can't do anything useful with it.
And if you grant full authority you are toast! Object capabilities enable you at many
different scales to create easy-to-understand secure cooperation.

If your cooperation has no security you will quickly find that the number of people you
dare to cooperate with is limited. Unless you have security, you can only cooperate with
your closest friends. By making this cooperation secure, we enable you to cooperate
with people whom you do not fully trust. So if you want to do cooperation, you do
indeed care about security.

– Marc Stiegler, From Desktop to Donuts: Object-Caps Across Scales

While all the examples in this paper follow object capability security discipline, this paper has
hand-waved past one critical detail. Even if Goblins follows object capability security discipline,
Goblins is implemented as a library. Goblins can provide capability security properties in the
network through OCapN, but it needs more:

• It must trust the security environment that Goblins itself runs on, so that Goblins-enabled
programs will not be subverted in the security properties they are designed to provide. In
other words, it needs a trusted computing base.

• It must also be possible to preserve the safety of code which runs on top of Goblins (both
externally potentially malicious or buggy vulnerable code, but even preserving the safety of
Goblins code, to help reduce bugs which manifest as vulnerabilities), which means it needs a
safe evaluation environment.

There are many layers of a trusted computing base, and Spritely would like to provide as many as
possible:

• User experience level safety: The end user experiences of everyday users should uphold the

63

https://www.youtube.com/watch?v=vrbmMPlCp3U

users' intuitions of security through the interfaces they use for their work, entertainment,
social communication, and community interactions. (This is the topic of a forthcoming
paper, Spritely for Secure Applications and Communities.)

• Network cooperation level safety: Spritely wishes to be able to cooperate with objects
hosted across the network and preserve capability passing semantics at the network
abstraction level. Objects should be able to cooperate with objects on another host, but
another host should be able to hold no more dangerous authority over them than the
capabilities which have been granted it (by the object, or by those who have delegated
capabilities to it). Thankfully, Goblins is able to provide this layer through OCapN already,
so this constitutes part of the trusted computing base (assuming, of course, lower
components have not been subverted).

• Library level safety: All modules are untrusted by default. Loading a module doesn't mean
it can do dangerous things. Instead of libraries being able to "reach out" and grab access to
whatever dangerous operations they would like (such as accessing the filesystem, the
network, etc), libraries should have to be passed explicit capabilities to do these things, not
unlike passing capabilities into the invocation of a function.

• Language level safety: Related to the above, the language needs to uphold the security
properties encode in programs, and the runtime itself should be well programmed and to
have good object capability enabling semantics. Generally, for a language to be an object
capability programming language, it should uphold the following properties: no ambient
authority, no global mutable state, lexical scoping with reference passing being the primary
mechanism for capability transfer, and importing a library should not provide access to
interesting authority.

• Application level safety: All programs are untrusted by default. Loading a program doesn't
mean it can do dangerous things. Individual applications should be sandboxed to begin with
no interesting authority, and users should have the ability to launch new sandboxed
applications. Access to the filesystem, network, system clocks, etc should also be
capabilities passed in at this layer.33

• Operating system level safety: The operating system itself should be programmed with
object capability security in mind. It should have a secure and auditable kernel. Access to
external devices should be contained and managed on a capability level.

• Hardware level safety: The hardware itself should not be a path to violating the integrity of
the system, as free of side-channel attacks as possible, tamper-resistant, auditable and
controllable by the end user, and understandable with well published specifications.

• Supply chain level safety: Users should be able to be sure that hardware produced matches
the hardware security specifications laid out, that the production facilities are auditable, and
that backdoors are not inserted.

• Cryptographic level safety: There should be fundamental cryptographic operations which
have understandable abstractions.

• Physics and mathematics level safety: It should be certain that the physics and the
mathematics of the universe actually function in the manner described so that all of these
abstractions are possible.34

33 Sandboxing alone is insufficient. Running in an enclosed environment where all available capabilities are defined at
launch time is insufficient; this will result in too narrowly available a range of capabilities, and users will drive a
sledgehammer through the walls by handing too-large of a bundle of capabilities by default. Instead, operating
systems must provide the ability to "pass in" capabilities as a system is run, not only at initialization time.

34 If we are living in a simulation, we ask that those running simulation politely not tamper with the abstraction

64

spritely-for-users.org

This is a tall order (especially that last one). Listing these out can make the process of building a
fully secure system feel like an impossible task. Thankfully, things are better than they appear:
while layers lower on the stack are able to subvert the integrity of layers higher on the stack, at any
layer of operation users benefit from protection. For example, if a user is running a web browser in
what is considered to be a generally insecure operating system, if the execution of untrusted code is
contrained from accessing the user's file system, the user is still protected from some levels of
vulnerability.

Spritely, aiming to provide a trusted computing base which users can rely on, is interested in secure
implementations of every one of these layers. However, for the purpose of upholding Goblins'
abstractions most especially, the most obvious layer of importance is on the library level safety and
language level safety layers. To this end, the choice of Guile for this task is not a coincidence: while
more work needs to be done, Guile has the right fundamental operations of sandboxed evaluation
which are needed to build a secure environment.35 The demonstration of such an object capability
programming language with Goblins running on top of it will be the focus of a future Spritely
Institute paper.

6. Portable encrypted storage
Every seller of cloud storage services will tell you that their service is “secure”. But
what they mean by that is something fundamentally different from what we mean. What
they mean by “secure” is that after you’ve given them the power to read and modify
your data, they try really hard not to let this power be abused. This turns out to be
difficult! Bugs, misconfigurations, or operator error can accidentally expose your data
to another customer or to the public, or can corrupt your data. Criminals routinely gain
illicit access to corporate servers. Even more insidious is the fact that the employees
themselves sometimes violate customer privacy out of carelessness, avarice, or mere
curiosity. The most conscientious of these service providers spend considerable effort
and expense trying to mitigate these risks.

What we mean by “security” is something different. The service provider never has the
ability to read or modify your data in the first place: never.

— The Tahoe-LAFS manual on "provider-independent security"

How does one keep information alive even when computers drop from the network? Is there a way
to keep information alive and not beholden to the liveness of a particular hosting provider without
sacrificing the privacy and security of users? Can robust and private data storage be achieved in a
way that upholds the same level of capability security properties demonstrated in this paper so far?

Security as relationships between objects provided an example of implementing a blog purely in
terms of behavior. It handwaved past several details, mostly notably how to construct OCaPN URIs
so that live connections to blogposts can be bootstrapped from out-of-band, how to persist the
running object graph to long-term storage via safe serialization, how to encode a more sophisticated
markup language (eg HTML or Markdown) to allow for rich document formatting, or any example
of embedding (potentially large) static media within said documents.

Nonetheless, these blogposts resemble contemporary blogs served over HTTP in the following way:

barriers we have come to rely on unless we are to be given access to the parent environment in which our simulation
runs.

35 It should be seen as a good sign that the previously linked sandboxed evaluations in Guile page references A
Security Kernel Based on the Lambda Calculus, which has been mentioned several times throughout this paper.

65

https://tahoe-lafs.readthedocs.io/en/latest/about-tahoe.html#what-is-provider-independent-security
https://tahoe-lafs.org/
https://www.gnu.org/software/guile/manual/html_node/Sandboxed-Evaluation.html
https://www.gnu.org/software/guile/
http://mumble.net/~jar/pubs/secureos/secureos.html
http://mumble.net/~jar/pubs/secureos/secureos.html
https://www.gnu.org/software/guile/manual/html_node/Sandboxed-Evaluation.html

access to these documents requires a live reference to a particular entity on a particular machine and
is retrieved via a live interaction over a live connection. While this was useful for demonstrating
that a capability system with interesting interactions can be constructed out of a behavior-oriented
system rather than a data-oriented system, the blogposts themselves are fundamentally data-
oriented and could be stored as useful portable documents.

Unfortunately, this means that an interesting document is subject to the bandwidth (and to a smaller
degree, processing) availability and uptime of a single machine on the network. Hosting costs for
producing a useful resource can grow, and usually fall on the shoulders of that particular resource.
Should this machine no longer be available on the network, pointers to documents hosted by it can
disappear. This is the general state of the web today, and is a major drive towards centralization and
general bitrot of useful and historical information.

The solution to this problem is to support portable encrypted storage, which must fulfill the
following properties:

1. Documents must be content addressed and location agnostic. In other words, the name of
the particular resource is based on information stemming from the content itself rather than a
particular network location. Generally this name is the hash of the corresponding document
in the case of immutable documents and a public key (or hash thereof) in the case of
mutable documents.

2. Both immutable and mutable documents must be supported, with the latter generally being
built upon the former.

3. Documents must be encrypted such that the documents can be stored in locations that are
oblivious to their actual contents. Only those possessing read capabilities should be able to
access the documents' contents.

4. Documents should be chunked so that they are not vulnerable to size-of-file attacks.

5. Reading (and, in the case of mutable documents, writing) documents must be accessed
through abstract capabilities.

6. Files must be network agnostic, meaning that they are not only location agnostic but
agnostic even to a specific network structure. peer-to-peer, client-to-server, and sneakernet
networks all should be supported with the same object URIs between them.

Many systems have been written which supply some of these properties.

IPFS is the most popular but does not provide the privacy and encryption requirements listed above,
although it can be used as a foundation on which those layers are based. Spritely has written its own
toy examples that satisfy all of the above requirements with Magenc and Crystal, as well as an
example applied to a social network with Golem. Freenet and Tahoe LAFS were the first systems
coming close to fulfilling most (but not all) of the above requirements, and laid the foundations for
understanding what these requirements are and how to fulfill them. Currently Encoding for Robust
Immutable Storage (ERIS) and Distributed Mutable Containers (DMC) appear to be the most
promising directions for fulfilling these requirements.

This paper is primarily designed to discuss behavior-oriented systems rather than data-oriented
systems; Spritely Goblins does not itself implement a solution for portable encrypted storage as
described above, but can be a good backend for a transport by which they may be distributed, and
can compose nicely with the distributed object programming features that Goblins does provide.
However, given that the purpose of this paper is to describe essential infrastructure, it was important
to demonstrate why in the long run portable encrypted storage will be provided. Live distributed
object programming without portable encrypted storage is capable in the short term of building full

66

https://inqlab.net/projects/dmc/
https://openengiadina.net/papers/eris.html
https://openengiadina.net/papers/eris.html
https://tahoe-lafs.org/
https://freenetproject.org/index.html
https://gitlab.com/spritely/golem/blob/master/README.org
https://gitlab.com/spritely/crystal/blob/master/crystal/scribblings/intro.org
https://gitlab.com/dustyweb/magenc/blob/master/magenc/scribblings/intro.org
https://ipfs.io/

social network systems, but secure long-lived document storage is important to the preservation of
the cultural artifacts humans build together and to provide scalability friendly towards peer-to-peer
networks without undue pressure towards centralization. Fuller expansion of this topic will be the
subject of future papers.

7. Conclusions
Despite early ambitions of internet architecture, networked technologies of the last two decades
have primarily been built by, and around the needs of, large and centralized institutions. Spritely's
vision of re-architecting individual and community experiences on the internet requires a different
approach where radically decentralized and participatory secure networked applications are the
default result of programming.

Spritely Goblins meets these goals by building on established distributed programming lessons
from the object capability community. Goblins further integrates these designs with theoretical
approaches from the Lisp/Scheme and functional programming world, building a system that
hybridizes actors and the lambda calculus. Many complicated considerations, otherwise relegated to
the fringes of an explosion of domain specific languages and protocols, unify under a single model.
While implemented on Scheme (for being a strong and natural fit), these ideas are written as a
library general enough to be ported to most language environments with first class functions and
lexical scoping.

The end result delivers great power to the user. Security analysis moves towards the intuitions of
ordinary programming paradigms of reference passing. The vat model of computation synthesizes
both synchronous programming against highly localized objects and asynchronous programming
against objects which can live anywhere. Turn-based transactionality means that failures do not
cause corruption of state in most circumstances. Time travel plus distributed debugging allows the
user to more easily pin down problems and analyze them from the point of view of the system at the
time where the errors occurred. An integrated safe serialization mechanism allows for objects to
describe how they should be persisted using no more authority than that which they have been
already granted and, upon being restored, also allows for the possibility of upgrade. And most
importantly, Goblins' integration with OCapN (the Object Capability Network) and its
implementation of CapTP (the Capability Transport Protocol) provides a unified distributed
programming protocol with powerful features such as distributed debugging and efficient promise
pipelining.

With all these features combined, Goblins provides a foundation where not only is building a future
as robust as Spritely's vision requires possible, it is also comfortable and comprehensible.

8. Appendix
8.1. On the choice of Scheme
8.2. Lisp and Wisp
8.3. Setting up Guile, Wisp, and Goblins
8.4. Using vats in files
8.5. Utilities for rendering blog examples
8.6. Implementing sealers and unsealers
8.7. Glossary
8.8. Acknowledgments
8.9. ChangeLog

67

8.1. On the choice of Scheme

This paper (and Goblins itself) was written in the Guile implementation of Scheme, itself a dialect
of Lisp. (A Racket version also exists, but is not the subject of this paper. The two versions are very
similar.) This choice was made for many reasons, most notably of which was the flexibility, fast
iteration time, and extensibility of the underlying language.

The usual surface syntax for Scheme and other languages like it in the Lisp family is
"parenthetical", like so:

(define (greet name)
 (string-append "Hello " name "!"))

In a parenthetical representation of symbolic expressions (also known as s-experessions or sexps),
the parentheses show where the beginning and end of each "expression" are very clearly. The
parenthetical syntax is also highly minimal, but is robust enough that any (really!) programming
language can be represented using this kind of Lisp "parenthetical symbolic expression" syntax.

In general, Scheme/Lisp programmers' editors do the work of managing parentheses for them, and
most code is read by indentation rather than by the parenthetical grouping. In other words, Lisp
programmers usually don't spend much time thinking about the parentheses at all. However, since
most programming languages don't use syntax like this, experienced programmers sometimes find
parenthetical Lisp style syntax intimidating. (In general, students totally new to programming have
an easier time learning traditional Lisp syntax than seasoned programmers unfamiliar with Lisp
do.)36

To keep experienced programmers from feeling intimidated, this paper uses Wisp, which looks like
so:

define (greet name)
 string-append "Hello " name "!"

Compare to the previous greet example:

(define (greet name)
 (string-append "Hello " name "!"))

The structure of the language is the same in each of these, only the surface syntax has changed.
Wisp derives its expression structure from indentation, but the end result is still symbolic
expressions, just not expressed parenthetically. Wisp can be converted to parenthetical s-
expressions, and vice versa.

8.2. Lisp and Wisp

What follows is a short explanation of how Wisp relates to Lisp. The left-hand syntax is written in
Wisp, whereas the right-hand code is written in standard parenthetical Scheme:

define (add-drawing p f) | (define (add-drawing p f)

36 The first author has found that in running workshops introducing programming, students learning programming for
the first time don't find Lisp syntax intimidating once they start programming, but experienced programmers do
because Lisp's syntax looks alien at first sight if you know most other languages. The author has even found that in
teaching both Scheme (through Racket) and Python in parallel, many students with no programming background
whatsoever (the workshops were aimed at students with a humanities background) expressed a strong preference for
parenthetical Lisp syntax because of its clarity and found it easier to write and debug given appropriate editor
support (Racket makes this easy with its newcomer-friendly IDE, DrRacket). For more about this phenomenon, see
the talk Lisp, but Beautiful; Lisp for Everyone.

68

https://srfi.schemers.org/srfi-119/srfi-119.html
https://fosdem.org/2022/schedule/event/lispforeveryone/
https://en.wikipedia.org/wiki/Scheme_(programming_language)
https://www.gnu.org/software/guile/

 define drawer | (define drawer
 make-pict-drawer p | (make-pict-drawer p))
 new canvas% | (new canvas%
 parent f | (parent f)
 style '(border) | (style '(border))
 paint-callback | (paint-callback
 lambda (self dc) | (lambda (self dc)
 drawer dc 0 0 | (drawer dc 0 0)))))

These are just different surface syntax representations of the same program. The code can mostly be
read by indentation, with deeper nested indentation levels representing nested sub-expressions.
Sections of code wrapped in parentheses retain their parenthetical representation as-is.

There are only a couple of tricky details to know. First, lines starting with a dot continue a previous
expression:

render-to-file | (render-to-file
 . "cool-cat.png" | "cool-cat.png"
 make-cat-drawing | (make-cat-drawing
 . #:happy? #t | #:happy? #t
 . #:size 100 | #:size 100))

Second, a colon can be used to nest a sub-expression on the same line:

define (get-and-save-username db) | (define (get-and-save-username db)
 define name : input "Name:" | (define name (input "Name:"))
 db-store db "username" name | (db-store db "username" name))

That's all you need to know about Wisp.

8.3. Setting up Guile, Wisp, and Goblins

This appendix follows the broader document in using Guile and Guile Goblins as the example
implementation. Although the process of setting up a Racket environment is different, it should be
relatively similar.

The easiest way to get started with Goblins and Wisp is to use GNU Guix. Either on the Guix
system or using it as a third-party package manager, the following command will get you into a
Guile REPL using Wisp with Goblins available:

> guix shell --pure guile guile-goblins guile-wisp -- guile --language=wisp

If you don't want to use Guix, you'll need to obtain Guile, Guile Wisp, and the Guile version of
Goblins separately.

8.3.1. Obtaining Guile

If you're using a Unix-like operating system, you probably have a package manager with Guile
available in its repositories - homebrew, apt, dnf, etc. The recommended way to obtain Guile is
through such a package manager. Failing that, you may also download Guile source and then
compile it according to the instructions in its manual. Note that while Goblins may work with Guile
2, it only supports Guile 3. You'll probably need a few unmentioned dependencies to compile it:

• a C compiler toolchain, such as GCC

• GNU Autotools

With those, inside the directory for the Guile source directory, you'll run the following commands:

> ./configure

69

https://www.gnu.org/software/automake/
https://gcc.gnu.org/
https://www.gnu.org/software/guile/manual/html_node/Obtaining-and-Installing-Guile.html
https://www.gnu.org/software/guile/download/
https://guix.gnu.org/

> make
> make install

After that's done you can move on to…

8.3.2. Obtaining Wisp

Once again, the best route to obtaining Wisp is to use your system package manager where it likely
has a name such as guile-wisp. However, you can also download its source code and compile it.
This presupposes an extant Guile installation. Inside its source directory, you should be able to run:

> ./configure
> make
> make install

And finally you get to…

8.3.3. Obtaining Goblins

At the moment, Goblins is only packaged for Guix and Homebrew. The only alternative is to build
it manually. Following the instructions in the Guile Goblins source repository, you'll need to obtain
a few dependencies:

• Guile 3.0 (handled above)

• guile-gcrypt

• guile-fibers

• Tor (runtime; optional, for networking)

• git (implicitly)

Then it should be as straightforward as running the following commands:

> git clone https://gitlab.com/spritely/guile-goblins
> cd guile-goblins
> ./configure
> make
> make install

With all of that completed, you get a REPL to run the examples in this document as follows:

> guile --language=wisp

8.4. Using vats in files

In order to start programming with Goblins, you will need to boot up a vat somewhere. In general,
Goblins uses Fibers to implement vats.

Running spawn-vat returns vat object. Code can be run within the context of a vat using the
,enter-vat command at the REPL:

REPL> (define my-vat (spawn-vat))
REPL> my-vat
;; => #<vat YtIWhAE1>
REPL> ,enter-vat my-vat
REPL [1]>

70

https://github.com/wingo/fibers/
https://git-scm.com/
https://www.torproject.org/
https://github.com/wingo/fibers
https://notabug.org/cwebber/guile-gcrypt
https://gitlab.com/spritely/guile-goblins
https://www.draketo.de/software/wisp#updates

REPL> define my-vat : spawn-vat
REPL> . my-vat
;; => #<vat YtIWhAE1>
REPL> ,enter-vat my-vat
REPL [1]>

You can then leave the vat sub-REPL with ,q:

REPL [1]> ,q

REPL [1]> ,q

Inside of a file - or at the REPL if you so choose - you can instead use the call-with-vat
procedure:

(call-with-vat my-vat
 (lambda ()
 (define alice (spawn ^greeter "Alice"))
 ($ alice "Bob")))

call-with-vat my-vat
 lambda ()
 define alice
 spawn ^greeter "Alice"
 $ alice "Bob"

For convenience, the with-vat macro can be used instead of call-with-vat. Here's the
above example rewritten to use with-vat:

(with-vat my-vat
 (define alice (spawn ^greeter "Alice"))
 ($ alice "Bob"))

with-vat my-vat
 define alice
 spawn ^greeter "Alice"
 $ alice "Bob"

You can use the vat-halt! procedure to stop the vat, and vat-running? to check its status:

REPL> (vat-halt! my-vat)
REPL> (vat-running? my-vat)
;; => #f

REPL> vat-halt! my-vat
REPL> vat-running? my-vat
;; => #f

In the future, Guile vats will automatically halt when no more references exist and thus the vat can
do no more work. The Racket version of vats already work this way. In the meantime, you'll need to
call halt-vat! manually.

71

8.5. Utilities for rendering blog examples
;; Blogpost rendering utilities
;; ============================
(define (display-post-content post-content)
 (match post-content
 (('*post* post-title post-author post-body)
 (let* ((title (or post-title "<<No Title>>"))
 (title-underline (make-string (string-length title) #\=))
 (author (or post-author "<<Anonymous>>"))
 (body (or post-body "<<Empty blogpost!>>")))
 (display
 (format #f "~a\n~a\n By: ~a\n\n~a\n"
 title title-underline author body))))))

(define (display-blog-header blog-title)
 (define header-len (+ 6 (string-length blog-title)))
 (define title-stars (make-string header-len #*))
 (display
 (format #f "~a\n** ~a **\n~a\n"
 title-stars blog-title title-stars)))

(define (display-post post)
 (display-post-content ($ post 'get-content)))

(define (display-blog blog)
 (display-blog-header
 ($ blog 'get-title))
 (for-each
 (lambda (post)
 (display "\n")
 (display-post post)
 (display "\n"))
 ($ blog 'get-posts)))

;; Blogpost rendering utilities
;; ============================
define (display-post-content post-content)
 match post-content
 ('*post* post-title post-author post-body)
 let*
 : title : or post-title "<<No Title>>"
 title-underline : make-string (string-length title) #\=
 author : or post-author "<<Anonymous>>"
 body : or post-body "<<Empty blogpost!>>"
 display
 format #f "~a\n~a\n By: ~a\n\n~a\n"
 . title title-underline author body

define (display-blog-header blog-title)
 define header-len
 + 6 (string-length blog-title)
 define title-stars
 make-string header-len #*
 display
 format #f "~a\n** ~a **\n~a\n"
 . title-stars blog-title title-stars

define (display-post post)

72

 display-post-content
 $ post 'get-content

define (display-blog blog)
 display-blog-header
 $ blog 'get-title
 for-each
 lambda (post)
 display "\n"
 display-post post
 display "\n"
 $ blog 'get-posts

8.6. Implementing sealers and unsealers

There are two ways to construct sealers and unsealers; one is the "coat check" pattern,37 the other is
the language-protected dynamic type construction pattern. The latter has less complications
surrounding garbage collection and leads to some real "a-ha" moments, so that will be shown here.

This uses dynamically constructed type-records (as taken from the SRFI-9 scheme extension). In
Guile, import the following:

(use-modules (srfi srfi-9))

use-modules
 srfi srfi-9

To understand how these records work in the general case, here is an example of a srfi-9 record
used to define a 2d positional object called <pos>:

(define-record-type <pos> ; <pos>: name of the type
 (make-pos x y) ; make-pos: constructor, takes two arguments
 pos? ; pos?: brand-check predicate (is it a pos?)
 (x pos-x) ; pos-x: accessor for x
 (y pos-y) ; pos-y: accessor for y

define-record-type <pos> ; <pos>: name of the type
 make-pos x y ; make-pos: constructor, takes two arguments
 . pos? ; pos?: brand-check predicate (is it a pos?)
 x pos-x ; pos-x: accessor for x
 y pos-y ; pos-y: accessor for y

Use of this pos is simple enough:

REPL> (define our-pos (make-pos 2 3))
REPL> (pos-x our-pos)
;; => 2
REPL> (pos-y our-pos)
;; => 3
REPL> (pos? our-pos)
;; => #t
REPL> (pos? 'something-else)
;; => #f

37 The coat check pattern can be implemented and explained easily also: the coat is the value to be sealed, the sealer is
the coat check desk, the ticket for later retrieval the sealed object, and the coat retrieval desk the unsealer. However
this involves extra work to avoid garbage collection concerns amongst other issues; see "2.3.3 The Case for Kernel
Support" in A Security Kernel Based on the Lambda Calculus.

73

https://srfi.schemers.org/srfi-9/srfi-9.html
http://mumble.net/~jar/pubs/secureos/secureos.html

REPL> define our-pos
_____ make-pos 2 3
REPL> pos-x our-pos
;; => 2
REPL> pos-y our-pos
;; => 3
REPL> pos? our-pos
;; => #t
REPL> pos? 'something-else
;; => #f

To define these utilities so that they can be used from other modules, start a new file called
simple-sealers.w and define the following:

(define-module (simple-sealers)
 #:use-module (srfi srfi-9)
 #:use-module (srfi srfi-9 gnu)
 #:export (make-sealer-triplet))

define-module : simple-sealers
 . #:use-module : srfi srfi-9
 . #:use-module : srfi srfi-9 gnu
 . #:export (make-sealer-triplet)

Following from this, look at how make-sealer-triplet works:

;; Make a sealer, unsealer, and brand-check predicate using
;; dynamic type generation.
(define (make-sealer-triplet)
 (define-record-type <seal>
 (seal val) ; constructor (sealer)
 sealed? ; predicate (brand-check)
 (val unseal)) ; accessor (unsealer)

 ;; Prevents snooping on contents at REPL, etc
 (define (print-seal _rec port)
 (display "#<sealed>" port))
 (set-record-type-printer! <seal> print-seal)

 ;; Return sealer, unsealer, sealed? predicate
 (values seal unseal sealed?))

;; Make a sealer, unsealer, and brand-check predicate using
;; dynamic type generation.
define (make-sealer-triplet)
 define-record-type <seal>
 seal val ; constructor (sealer)
 . sealed? ; predicate (brand-check)
 val unseal ; accessor (unsealer)

 ;; Prevents snooping on contents at REPL, etc
 define (print-seal _rec port)
 display "#<sealed>" port
 set-record-type-printer! <seal> print-seal

 ;; Return sealer, unsealer, sealed? predicate

74

 values seal unseal sealed?

An invocation of make-sealer-triplet defines a new <seal> type on the fly which will be
completely distinct from any made during future invocations of make-sealer-triplet. The
sealer is the constructor (accepting one argument, the sealed val), the brand-check is the type
predicate, and the unsealer is the accessor of the sealed val. If running in a language environment
which does not allow the user to piece apart a record without its corresponding accessor, there is no
way to retrieve the associated value without the unsealer.

Note that upholding the above requires cooperation from the language runtime to not expose tools
for deconstructing arbitrary record structures. "Unfortunately", Guile does provide tools readily
with record-accessor, record-constructor, and so on. However, "unfortunately" is in
scare quotes because the situation is not so dire (or no more dire than the default situation in Guile,
which already provides even more dangerous operations such as accessing the filesystem, the
network, and so on). Application safety, library safety, and beyond describes how language level
safety can be achieved. By not providing these record deconstructing tools to a constrained
execution environment, the properties of sealers and unsealers as defined above can be upheld.

8.7. Glossary

8.7.1. Goblins and capability terminology

• Abstract Syntax Tree: The abstracted programming language structure which the
programming language operates at. See also surface syntax.

• Actor: A computational entity that operates only via asynchronous message passing. See
also actor model, defined below. An object which only communicates via asynchronous
message passing is usually considered an actor.

• Actor model: A programming paradigm where computation occurs between fully
asynchronous message passing between computational entities named actors. An actor
operating under the classic actor model processes one incoming message at a time defined
by its current behavior, and in response may create new actors (obtaining their addresses in
the process), send messages to other actors (including introducing them to actors this actor
knows about in the process), or specify a change of behavior in regard to its next message.
(To distinguish this core, original, and general subset of possible variants, the term classic
actor model is sometimes used.)

• Actormap: A transactional heap mapping object references to a set of behaviors.

• Access Control List (ACL): In contrast to object capability security, an Access Control List
system relies on identity checks against approved operations. ACL systems tend to exhibit
ambient authority and confused deputy vulnerabilities. See the paper ACLs Don't for an
explanation of the many problems inherent to access control lists.

• Ambient authority: A source of vulnerabilities in many programs, particularly those
operating under an ACL model of execution; ambient authority refers to authority that is
implicitly available. Programs with ambient authority designs tend to be vulnerable to
confused deputy attacks and usually fail to adhere to the principle of least authority,
increasing the attack surface of a program dramatically. Since an object capability
environment involves explicit use of references one holds and has access to, ambient
authority risks are significantly smaller.

• Behavior: In Goblins, the behavior of the object is a procedure defining how it will

75

http://waterken.sourceforge.net/aclsdont/current.pdf

currently react in response to an incoming message.

• Behavior-oriented: In contrast to a data-oriented system, a behavior-oriented system is
primarily defined in terms of the behaviors of its participants and their relationships (which
may both change over time). The mapping of references to behavior in Goblins is handled at
a low level through the actormap (though this is a detail mostly hidden from users of
Goblins). Behavior-oriented and data-oriented systems are duals, but the primary paradigm
taken dramatically shapes the structure of the underlying architecture.

• Capability: See object capability.

• CapTP: Originally implemented in E, and now (as one layer of OCapN) implemented in
Goblins, CapTP provides abstractions for distributed object programming which allow for
programming against any object on the network to have the same ease and semantics as
against locally hosted objects. Also provides some neat features such as distributed garbage
collection and promise pipelining.

• Causeway: A distributed debugger implemented in E and a source of inspiration to Goblins'
distributed debugger.

• Classic actor model: See actor model.

• Client-to-server: A network architecture where certain participants on the network have
elevated, structurally central status, named servers, and clients connect to these as lighter,
structurally less significant (and generally less addressable) status. Typically eventually
results in a centralized topology. Contrast with peer-to-peer architectures.

• Confused deputy: A confused deputy is a kind of vulnerability which arises when one entity
wishes to exploit the authority another entity has but which the former entity does not. Since
the general object capability paradigm results in "if you can't have it, you can't use it",
capability systems are (generally) free from such attacks. (Careless introduction of identity
or rights amplification into an object capability system can re-introduce the possibility of
such vulnerabilities, a topic of a future paper.) Originally described in The Confused Deputy
(or why capabilities might have been invented) by Norm Hardy.

• Constructor: Within Goblins, a constructor is the procedure which, upon being invoked via
spawn, returns the initial behavior of the newly constructed object. spawn passes the
constructor both a bcom capability (for changing behavior) and all the remaining arguments
passed to spawn, allowing for initial behavior to be tuned to the purpose of this particular
object and with other capabilities as references which allow the object to correctly operate.

• Data-oriented: In contrast to behavior-oriented, data-oriented systems involve heavy
analysis of data describing the system. Data-oriented systems tend to involve significant
amounts of judgements upon data and narrative, and thus tend to encourage ACL type
designs (and thus also their problems), but this is not universally the case. Many CRUD web
applications reading and writing from an SQL database with separate logic for interpreting
or modifying that data are often data-oriented, and so are many systems which focus on
passed messages as descriptive information of updates rather than actions to execute.

• Dialect: A language variant, particularly a variant of Lisp.

• Distributed object programming: A programming style where asynchronous programming
may occur against a network of interconnected object relationships, reducing the conceptual
overhead of building secure, highly peer-to-peer networked programs.

• Distributed garbage collection: The cooperation of multiple machines to free resources
which are no longer needed. Implemented by CapTP. More specifically, cyclic distributed

76

https://css.csail.mit.edu/6.858/2015/readings/confused-deputy.html
https://css.csail.mit.edu/6.858/2015/readings/confused-deputy.html
http://www.erights.org/elang/tools/causeway/index.html

garbage collection if cycles crossing machine boundaries are collected, and acyclic
distributed garbage collection if not.

• E: A major influence on the design of Goblins, direct successor to Joule, innovator of many
object capability security patterns, first implementer of the vat model of computation, and
the source of the first iteration of CapTP (and VatTP, as part of Pluribus).

• Eval/Apply: The heart of most programming languages: eval gathers up the values of
arguments to an expression and apply performs the execution of the expression's behavior
against the evaluated arguments. Each calls the other until achieving a "fixed point" of
computation (the result of the total program evaluation). Popular topic of conversation
amongst Scheme programmers.

• Functional programming: Programming without side effects; freedom from time.

• Goblins: The very distributed object system described by this paper, and the heart of
Spritely's programming environment.

• Guile: A particular dialect of Scheme, on which Goblins has been implemented, and the
implementation of focus in this paper.

• Homoiconic, Homoiconicity: The property, most notably in Lisp, of surface syntax being
the same as the abstract syntax tree, under a datastructure which can be manipulated and
used by the programmer. This permits easy language extensions in the language and makes
the language much more general.

• Identity: An abstract signifier for some individual, resource, or concept. More mysterious a
topic than it appears at surface level, and comparison of identity equality and equivalence
particularly complicated. When identity is checked as the primary form of access control,
becomes an Access Control List.

• Joule: A fully asynchronous programming language, and a direct predecessor to E.

• Lambda: Procedure abstraction, associated heavily with the Lambda Calculus, and
generally considered the heart of Scheme. Composes Goblins objects both as the constructor
and as the behavior of the object. Generally considered "The Ultimate".

• Lisp: A programming language family known for being highly extensible, easy to
implement, and with many dialects. (The particular dialect of Lisp used in this paper is
Scheme.) Lisp has a highly flexible abstract syntax which makes it easy to "write Lisp in
Lisp", even "writing code that writes code", making language extensions or variants trivial
compared to most other languages. Its surface syntax is typically parenthetical but is not
necessarily so; see Wisp for the indentation-oriented surface syntax used in this paper.

• Machine: Within CapTP, a computer or process available on the network which contains
objects which may be communicated with.

• Monad: Something Goblins tres hard to not expose you to. Arguably, an implicit one exists
in Goblins. The meaning of this entry is left as an exercise for the reader.

• Near/Far: Near objects are co-located in the same vat, otherwise they are far.

• Netlayer: Within OCapN, an individual netlayer implements the abstract netlayer interface,
which is a way to implement a secure channel of communication between two machines.
Different transport layers can be used as a netlayer, ranging from peer-to-peer networks to
more contemporary client-server architectures. Originally called VatTP in E's
implementation of Pluribus.

• Network: An interconnected system of machines. See OCapN.

77

https://en.wikipedia.org/wiki/Lambda_calculus

• OCapN (the Object Capability Network): The combined layered abstractions of CapTP,
Netlayers, and OCapN specific URIs. Combined, these allow for the implementation of a
fully peer-to-peer distributed object programming environment with most networked
protocol concerns abstracted away from the developer.

• Object: A term with a lot of variant meaning, but which in the case of Goblins means a
reference to an abstract resource whose behavior is fully encapsulated by the runtime or
network. (Goblins does not mean anything about class hierarchies by the word object,
should you be suffering from a Java PTSD induced aversion to the term).

• Object capability (ocap): An object capability based architecture (sometimes known
simply as a capability architecture, though this term has prominent naming conflicts) is one
where one's authority is based on references which one can invoke to perform computation
and cause effects. Without a reference, one can't perform an action, leading to the slogan "if
you don't have it, you can't use it." Used as an abstraction of security and favorable to the
principle of least authority, though maintaining that pattern requires discipline.

• Object capability programming language: A programming language upholding object
capability security properties. Generally has the following properties: no ambient authority,
no global mutable state, lexical scoping with reference passing being the primary
mechanism for capability transfer, and importing a library should not provide access to
interesting authority.

• Object graph: The set of relationships between objects. In an object capability
programming language, this is typically the set of other object references within the
behavior of an object's scope.

• Peer-to-peer: A network architecture where a participant in the network has the same
abstracted priority across the network routing fabric as any other participant on the network.
Contrast with client-to-server architectures.

• Pluribus: The equivalent of OCapN in E. Made for a good pun: E, Pluribus, Unum.

• Principle of least authority: Design systems such that entities hold no more authority than
they need in order to reduce the attack surface of an application and its subcomponents.
Generally easy to pull off in object capability architectures, and hard to pull off in access
control list architectures.

• Promise: A special type of object abstraction representing a computation yet to be
completed, either fulfilled or broken.

• Promise pipelining: From a programming perspective, the ability to send messages to the
objects promises will eventually designate before they are fulfilled. From a network
perspective, provides an optimization allowing delivery of messages to the host machine
queuing eventual delivery of messages once dependent promises are fulfilled, eliminating
unnecessary round trips. In other words, simplifies dependency-based asynchronous plan
construction. Propagates errors.

• Quasi-functional: Goblins' tricky "looks imperative from the perspective of invoking
another actor and functional from the perspective of an object updating its own behavior"
twist on kinda-sorta functional programming. Allows for powerful transactional
programming with time-traveling features without having to expose monad plumbing
directly to the user.

• Racket: Another Scheme which Spritely Goblins is also implemented on, but which is not
the focus of this paper.

78

http://www.mumble.net/~jar/articles/oo.html

• REPL: Read Eval Print Loop, an interactive programming language shell.

• Rights amplification: To (mis-)quote Alan Karp, "combine two things to get access to
another thing". Frequently used to provide group-like features in ocap systems. Frequently
implemented using sealers and unsealers. Used carelessly, can accidentally re-introduce
confused deputy vulnerabilities, but the patterns shown in this paper are free of such
problems. Analysis of this phenomena is hopefully the subject of a future paper.

• Safe serialization: Allowing objects to describe how they should be serialized, while still
following the object capability motto of "if you don't have it, you can't use it". Implemented
by Goblins, but originally in Safe Serialization Under Mutual Suspicion, which was inspired
by Uneval/Unapply.

• Sealers and unsealers: The equivalent of public-key cryptography, but implemented in
programming language abstractions instead. Frequently used to implement rights
amplification.

• Scheme: A lambda heavy dialect of Lisp. The examples in this paper use a particular
Scheme, Guile. Has some interesting history regarding the exploration of the actor model,
but probably too long to cover in an already overly-verbose glossary appendix.

• Surface syntax: The representation of the programming language that programmers
(usually humans) operate at. In Lisp derived languages, the surface syntax and abstract
syntax tree are generally not very far apart, which is partly what makes Lisp languages so
extensible.

• Swingset: Another interesting contemporary object capability programming language
environment, this one layered on Javascript and produced by Agoric.

• Sneakernet: A network architecture where messages are delivered physically from
participant to participant (perhaps even on foot, be that foot in wearing a sneaker or not).

• Spritely: An umbrella project to advance networked communities and decentralized
networked programming abstractions.

• Spritely Goblins: See Goblins.

• The Spritely Institute: The nonprofit which is the fiscal steward and primary developer of
Spritely Goblins amongst other things (and which produced this paper).

• Syntactic sugar: Syntax abstractions which make programming more convenient and
(ideally) pleasant to read and write.

• Transaction, transactionality: A set of operations which are replied in a conceptually
atomic manner: either all occur or none occur. Within Goblins, a turn is a transaction
representing a delta of behavior changes to the actormap (including the introduction of new
near objects), as well as a queue of messages to be sent. In the event of an error, the changes
will not be committed and the messages will not be sent.

• Turn: A top-level event handled by a Vat, generally a message sent to a particular object.
One unique feature of Goblins is that turns happen within transactions.

• Unum/Presence: The unum is an abstracted, conceptually and programmatically unified
object, implemented by individual object presences.

• Uneval/Unapply: The abstract concept behind safe serialization and the inverse of
eval/apply. Produces a program representing a graph of objects (using only the capabilities
the objects' behavior had in scope) which can be later re-instantiated using a complimentary
kind of eval/apply. Originally a remark from Jonathan A. Rees to Mark S. Miller leading to

79

https://agoric.com/
https://github.com/Agoric/agoric-sdk/tree/master/packages/SwingSet
http://erights.org/data/serial/jhu-paper/index.html

the Safe Serialization Under Mutual Suspicion paper. See also Rees's blogpost: Pickling,
uneval, unapply.

• URI (Universal Resource Identifier): A type of digital identifier indicating a networked
resource. OCapN defines several of these to designate machines and distributed objects.

• Vat, Vat model: An event loop which contains a set of objects, designed to be able to
communicate with objects in other event loops. Objects within the vat are considered near to
each other may perform both synchronous and asynchronous programming against each
other, whereas objects far from each other may only provide asynchronous programming
against each other.

• W7: The subset of Scheme implemented (on top of Scheme48) for Jonathan A. Rees's PhD
dissertation, A Security Kernel Based on the Lambda Calculus. Highly influential to Spritely
Goblins in demonstrating clearly that a pure lexically scoped language (such as a strict
subset of scheme) with no mutable toplevel scope or other sources of ambient authority is
already a viable object capability programming language.

• Wisp: An indentation-sensitive surface-level Lisp syntax, and the one used in this paper.
Wisp determines its expression boundaries based on whitespace. Compatible with most Lisp
implementations. Defined under the SRFI-119 specification.

8.7.2. Core goblins operations

• spawn: The spawn operator in Goblins.

• $: The synchronous call-return operator in Goblins.

• <-: The asynchronous message passing operator in Goblins. Returns a promise.

• on: Set up a callback to be handled with the resolution of a promise (possibly returning its
own promise related to said resolution).

• bcom: Pronounced "become", in Goblins bcom is the conventional name given to a
capability relevant to a particular object which permits, and is used to, indicate the next
behavior of the particular object. Passed by spawn (through Goblins' abstract kernel) to the
object's constructor. Technically implemented as a sealer, allowing for a functional substrate
for updating behavior.

8.7.3. Portable encrypted storage specific terminology

• Portable encrypted storage: A document storage system where files are not tied to any
particular machine location (via content addressed storage) and are encrypted in such a way
that hosting content does not provide the ability to read or modify the underlying contents of
hosted files.

• Content addressed (storage): A document storage system where documents are named and
verifiably retrieved by their content rather than by a particular network location.

• Immutable/mutable: Immutable objects and files do not change or update, mutable objects
and files do.

• Size-of-file attack: Statistically determining likeliness that a file contains particular content
based on its file size.

• Chunked: Split into consistently sized pieces to be latter reassembled, so as to avoid size-
of-file attacks or for storage and retrieval optimizations.

80

https://srfi.schemers.org/srfi-119/srfi-119.html
http://mumble.net/~jar/pubs/secureos/secureos.html
https://www.s48.org/
https://odontomachus.wordpress.com/2020/12/09/pickling-uneval-unapply/
https://odontomachus.wordpress.com/2020/12/09/pickling-uneval-unapply/
http://erights.org/data/serial/jhu-paper/index.html

• Location agnostic: Not tied to a particular location on the network.

• Network agnostic: Not tied to a particular network configuration or transport.

8.8. Acknowledgments

An enormous number of people reviewed and provided feedback to this paper. Thank you to: Alan
Karp, Baldur Jóhannsson, Chris Hibbert, Dan Connolly, Dan Finlay, Douglas Crockford, Jessica
Tallon, Jonathan A. Rees, Jonathan Frederickson, Mark S. Miller, Stephen Webber, Robin
Templeton, Leilani Gilpin, Kate Sills, and Ludovic Courtès. (NOTE: if you think you
should/shouldn't be on this list, let us know and we'll edit appropriately!)

Thank you to Mark S. Miller who personally spent enormous amounts of time walking Christine
through object capability ideas through the years and provided guidance on how to properly
represent granovetter diagrams (which, as applied to object capability systems, really are a powerful
but underdocumented visual language). Thank you to Jessica Tallon who actively used Spritely
Goblins during the production of this paper, allowing for feedback from direct experience, including
many suggestions for improvements in the examples. Thank you to Chip Morningstar who agreed
to let Spritely use his diagrams of the unum pattern. Thank you to Arne Babenhauserheide, who
developed the Wisp syntax for Lisp used in this paper.

8.9. ChangeLog

8.9.1. [2023-09-26 Tue]

Switched Wisp pre-processing of keywords hack to use normal Wisp approach (dots at the start of
line).

8.9.2. [2022-07-01 Fri]

• Incorporated feedback from Jakob L. Kreuze:

• Add a detailed footnote explaining a bit more about why promise pipelining makes
things cleaner and the risks of re-entrancy attack when coroutines provide splitchronous
operations which appear synchronous

• Various grammar nits

• Finish explanation of Alisha and Bob bob having their own Carol representations (was a
confusing intro to that section without)

• Rework homoiconic/homoiconicity footnote, glossary entry

8.9.3. [2022-06-30 Thu]

• Incorporated feedback from Leilani Gilpin:

• Added definitions in glossary for peer-to-peer, client-to-server, sneakernet, and italicize
usage of those

• Italicize usage of transaction and friends

• Clarify: it's not a requirement to read the other (as of this moment: to-be-written)
Spritely whitepapers to read this one

• Incorporated feedback from Robin Templeton:

81

• Clarify that Unix isn't the origin of ACLs, it popularized them

• Have a consistent comment syntax in first examples (and make it clear which ones are
the SHELL> vs REPL>)

• Capitalized Lisp/Smalltalk/Scheme

• Explain more clearly that it's not that Goblins itself is the essential toolkit to build
something like Spritely, it's that Goblins provides the essential features to be a worthy
toolkit

• Various garammar nitpicking

• Give the motivation for Portable encrypted storage sooner in its section

• Don't say "social network" in introduction, too captured a term

• Consistency around "New: comments

• Clearer introduction of what we mean by Unum in its first introduction

• Call "Lisp types" -> "Lisp dialects"

• Clarify which machine is local vs remote in fork-motors example

8.9.4. [2022-06-28 Tue]

• Many duplicate words removed

8.9.5. [2022-06-27 Mon]

• Add PDF export

• Explain which parts of the syntax are keywords

• Fix missing equals sign on the fork-motors section (a whole bunch of reviewers caught
this, thanks to everyone else for being so careful ;))

8.9.6. [2022-06-26 Sun]

• Incorporated many grammar fixes suggested by Alan Karp

• Guix manifest updated: we're now at the point where anyone with access to the repo can
easily build and verify all documents with the following:

SHELL> guix shell # sets up dependencies
GUIX-SHELL> make # builds papers, extracts all code
GUIX-SHELL> make check # runs unit tests on examples

8.9.7. [2022-06-24 Fri]

• Add tests for blog examples

• Simplify proxy code / explanation by using $ instead of <-

• Switch Matilda / the Teachers' invocations to use <- instead of $ to show off these do work
fully async

• Add explanation of define-values, let-values

82

8.9.8. [2022-06-23 Thu]

• Add tests for sealers/unsealers

• Fix some examples in sealers/unsealers section

8.9.9. [2022-06-22 Wed]

• Export ^cell in spritely-core.w for tests

• Various bugfixes to interactive examples found while writing tests

• More information in predicate / conditional section

• Add unit tests for Taste of Goblins section

• Add makefile rule to run unit tests

8.9.10. [2022-06-21 Tue]

• Both Wisp and Scheme files are now automatically extracted when the user runs make

• Fix format, was using Racket's version

• Provide and use method-cell.scm for importing methods

8.9.11. [2022-06-20 Mon]

• Incorporating suggestions from Jessica Tallon

• Fixed some renames of eval-expr (old name for metacirculator evaluator) to
evaluate (thanks for the catch, Jessica Tallon!)

• Rename some comments before lambda / procedure and procedure invocation /
application examples

• Make it clear that the methods macro does get complicated to figure out what's
happening to the ellipses… it's not just you, dear reader!

• Rename for-list macro to for, keep it simpler

8.9.12. [2022-06-18 Sat]

• Add a bit more about the Y Combinator (no, not the company) to a footnote in Scheme in
Scheme.

• Many tyops caught by spelcheckr

• Couple of small grammar suggestions from Baldur

8.9.13. [2022-06-17 Fri]

• Refactor introduction to language stuff, add On language and syntax choice with a mini
"how to convert wisp to parenthetical syntax in your head" explainer

• Security as relationships between objects written in full!

• Guest post with review written!

83

• Lessons learned written!

8.9.14. [2022-06-16 Thu]

• Adding to Appendix: A small-ish scheme and wisp primer

• Add explanations of letrec and named lets to Iteration and recursion

• Show symbols earlier when showing "some more types".

• Finish metacircular footnote.

• Explain that 'foo is just shorthand for (quote foo), etc

• Add On the extensibility of Scheme (and Lisps in general)

• Preview that we'll show how to write our own when in the first footnote which mentions

• Fully explain how the evaluator works in Scheme in Scheme

• Use format sooner

8.9.15. [2022-06-15 Wed]

• Adding to Appendix: A small-ish scheme and wisp primer

• Added Closures

• Add a footnote to Conditionals and predicates explaining that both cond and if can be
written in terms of each other. Also distinguish between <THEN-BODY> and <ELSE-
BODY> in the syntactic explanation of cond.

• Eliminate newline from examples… one less procedure to explain!

• Explain variable arguments, define*, values

• Added Mutation, assignment, and other kinds of side effects

• Added Scheme in Scheme and hoo boy, it's awesome.

• Add alist and quasiquote examples to Lists and "cons"

8.9.16. [2022-06-14 Tue]

• Most of Appendix: A small-ish scheme and wisp primer written.

• Correct footnote… we do explore rights amplification in this paper :)

8.9.17. [2022-06-11 Sat]

• Add Makefile, README, instructions for building HTML and extracting output

8.9.18. [2022-06-10 Fri]

• Finished incomplete sandboxing footnote

• Include explanations of how to build module files explicitly

• Rename section: Application safety, library safety, and beyond (formerly "Application and
library safety (and beyond)")

84

• Some updates to Appendix: Implementing sealers and unsealers

• Show example of pos? predicate in use

• Explain necessity of language runtime participating

• Move coat check pattern footnote to this section (which is where it was supposed to be
once the appendix was added, whoops)

• Reorder some of the appendices

• Started writing Appendix: A small scheme and wisp primer

8.9.19. [2022-06-09 Thu]

• Added Application safety, library safety, and beyond

• Added glossary definition for on

• Add Portable encrypted storage section and relevant glossary terms

• Made changelog and glossary subsections into actual reified, linkable-by-fragment
subsections

• Added Conclusions

8.9.20. [2022-06-08 Wed]

• Added Spritely Goblins as a society of networked objects

• Remove ^revoker from revocation pair example since it isn't used (the cell is though)

• Added When schemes go awry: failure propagation through pipelines

• Fleshed out the Glossary in no small amount of detail.

8.9.21. [2022-06-07 Tue]

• Added OCapN section

• .w wisp files now extracted from ../spritely-core.org (source of this document) via org-
babel. You can view them at:

• ../taste-of-goblins.w

• ../goblins-blog.w

• ../simple-sealers.w

• Cleaned up several code examples.

• Switched to new Wisp syntax adjustment (after discussion with Wisp upstream): lines
starting with keywords no longer require dot to continue previous line. Change likely to be
incorporated in future wisps.

8.9.22. [2022-04-02 Sat]

• Promise pipelining examples added to A Taste of Goblins. This section was already planned
but raised much interest in pre-review.

• Make tagging list with cons in ^post a bit easier to understand

85

simple-sealers.w
goblins-blog.w
taste-of-goblins.w
https://orgmode.org/worg/org-contrib/babel/
https://orgmode.org/worg/org-contrib/babel/
spritely-core.org

• First batch of the smaller of the changes suggested by Alan Karp (a whole bunch, should
iterate…)

• Incorporated feedback from Jessica Tallon

• Explained how Solitaire gets access to keyboard and mouse

• Switched reference from ^mcell to ^cell… oops, that's what I get from copy-pasting
code from another document

• Renamed our-cgreeter to julius in example

• Fixed expected displayed message in "heard back" part

• No longer use named let but the ^editor constructor, reflect that in surrounding text

• Mention cons prepends to a list where appropriate

• Fixed "Run by Robert" which had mistakenly said it was run by Lauren

• Make it clearer that Lauren will hold Robert responsible for anyone who uses admin-
for-robert (including someone Robert delegates authority to).

• Moved sealers and unsealers implementation details to Appendix: Implementing sealers
and unsealers

9. License
Copyright (C) 2022-2023 The Spritely Networked Communities Institute, Christine Lemmer-
Webber, Randy Farmer, and Juliana Sims

This work is licensed under the Creative Commons Attribution 4.0 International License as well as
the Apache License 2.0.

86

https://www.apache.org/licenses/LICENSE-2.0
https://creativecommons.org/licenses/by/4.0/

	1. Introduction
	2. Capability security as ordinary programming
	3. Spritely Goblins: Distributed, transactional object programming
	3.1. On language and syntax choice
	3.2. A taste of Goblins
	3.2.1. A simple greeter
	3.2.2. State as updating behavior
	3.2.3. Objects which contain objects
	3.2.4. Asynchronous message passing
	3.2.5. Transactions make errors survivable
	3.2.6. Promise pipelining
	3.2.7. When schemes go awry: failure propagation through pipelines

	3.3. Security as relationships between objects
	3.3.1. Making and editing a blogpost
	3.3.2. A blog to collect posts
	3.3.3. Group-style editing
	3.3.4. Revocation and accountability
	3.3.5. Guest post with review
	3.3.6. Lessons learned

	3.4. Spritely Goblins as a society of networked objects
	3.5. The vat model of computation
	3.6. Turns are cheap transactions
	3.7. Time-travel distributed debugging
	3.8. Safe serialization and upgrade
	3.9. Distributed behavior and why we need it

	4. OCapN: A Protocol for Secure, Distributed Systems
	5. Application safety, library safety, and beyond
	6. Portable encrypted storage
	7. Conclusions
	8. Appendix
	8.1. On the choice of Scheme
	8.2. Lisp and Wisp
	8.3. Setting up Guile, Wisp, and Goblins
	8.3.1. Obtaining Guile
	8.3.2. Obtaining Wisp
	8.3.3. Obtaining Goblins

	8.4. Using vats in files
	8.5. Utilities for rendering blog examples
	8.6. Implementing sealers and unsealers
	8.7. Glossary
	8.7.1. Goblins and capability terminology
	8.7.2. Core goblins operations
	8.7.3. Portable encrypted storage specific terminology

	8.8. Acknowledgments
	8.9. ChangeLog
	8.9.1. [2023-09-26 Tue]
	8.9.2. [2022-07-01 Fri]
	8.9.3. [2022-06-30 Thu]
	8.9.4. [2022-06-28 Tue]
	8.9.5. [2022-06-27 Mon]
	8.9.6. [2022-06-26 Sun]
	8.9.7. [2022-06-24 Fri]
	8.9.8. [2022-06-23 Thu]
	8.9.9. [2022-06-22 Wed]
	8.9.10. [2022-06-21 Tue]
	8.9.11. [2022-06-20 Mon]
	8.9.12. [2022-06-18 Sat]
	8.9.13. [2022-06-17 Fri]
	8.9.14. [2022-06-16 Thu]
	8.9.15. [2022-06-15 Wed]
	8.9.16. [2022-06-14 Tue]
	8.9.17. [2022-06-11 Sat]
	8.9.18. [2022-06-10 Fri]
	8.9.19. [2022-06-09 Thu]
	8.9.20. [2022-06-08 Wed]
	8.9.21. [2022-06-07 Tue]
	8.9.22. [2022-04-02 Sat]

	9. License

